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Introduction



Theory vs Practice in 1st order stochastic 
optimization in NN

Theory

• Optimal 1st order algorithm –
mirror descent with rates:

• Non – smooth

• Smooth

Practice

• Non smooth (even non 
convex), but usually

• Various variants of SGD are 
used (Adagrad, Adam, 
RMSProp, etc.)

Why don’t we use an optimal algorithm (MD) for 
optimization in NN training?



Optimal algorithm?

• Means, that upper bounds for this algorithm meets lower bounds for 
this class of problems (convex, non-smooth optimization in our case)

Projected Subgradient Descent                           Mirror Descent



(Projected) (Sub)gradient Descent

Bounds are usually obtained in a following way:

(Sub)gradient descent

Projected subgradient descent



(Projected) (Sub)gradient Descent

All subgradients are bounded in our setting

Convexity

Subgradient property



Projected Subgradient Method

First order Taylor approximation

• The same upper bounds as for the unconditional problem!

• But what if the “local geometry” is not Euclidian?

Prox - term



Mirror Descent



Mirror Descent

- Bregman divergence (distance) is induced by distance 
generating function:

Where DGF is “1” strongly convex w.r.t. primal norm

Idea: choose primal norm (with corresponding) dual norm and 
suitable distance function to fit the geometry of the data



Mirror Descent

source

https://authors.library.caltech.edu/9428/1/DHIsiamjmaa07.pdf


Mirror Descent

One more interpretation:

1.

2.

3.



Supremacy

Consider a simple problem, where MD could outperform GD:

Choose the primal norm:          , corresponding dual norm:



Supremacy

Let                              , then 

GD MD



Supremacy

What internet says:



Supremacy

My experiments:

N = 300 N = 500 N = 1000



Around local metric estimation

• Projected subgradient descent

• (Quasi)Newton methods

• Mirror Descent

• Natural Gradient

• Fashionable DL methods:



Conclusion
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Outline
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