Automatic differentiation.

Daniil Merkulov

Introduction to higher-order optimization methods. Skoltech

@dpiponi@mathstodon.xyz @sigfpe

I think the first 40 years or so of automatic differentiation was largely people not using it because they didn't believe such an algorithm could possibly exist.

11:36 PM · Sep 17, 2019

 $\ddot{}$

Figure 1: This is not autograd

Suppose we need to solve the following problem:

 $L(w) \rightarrow \min_{w \in \mathbb{R}^d}$

Suppose we need to solve the following problem:

 $L(w) \rightarrow \min_{w \in \mathbb{R}^d}$

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters *w* of an ML model (i.e. train a neural network).

Suppose we need to solve the following problem:

$$
L(w) \to \min_{w \in \mathbb{R}^d}
$$

- Such problems typically arise in machine learning, when you need to find optimal hyperparameters *w* of an ML model (i.e. train a neural network).
- You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where *d* could be dozens of billions it is very challenging to solve this problem without information about the gradients using zero-order optimization algorithms.

Suppose we need to solve the following problem:

$$
L(w) \to \min_{w \in \mathbb{R}^d}
$$

- Such problems typically arise in machine learning, when you need to find optimal hyperparameters *w* of an ML model (i.e. train a neural network).
- You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where *d* could be dozens of billions it is very challenging to solve this problem without information about the gradients using zero-order optimization algorithms.
- \bullet That is why it would be beneficial to be able to calculate the gradient vector $\nabla_w L=\left(\frac{\partial L}{\partial w_1},\ldots,\frac{\partial L}{\partial w_d}\right)^T.$

Suppose we need to solve the following problem:

$$
L(w) \to \min_{w \in \mathbb{R}^d}
$$

- Such problems typically arise in machine learning, when you need to find optimal hyperparameters *w* of an ML model (i.e. train a neural network).
- You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where *d* could be dozens of billions it is very challenging to solve this problem without information about the gradients using zero-order optimization algorithms.
- \bullet That is why it would be beneficial to be able to calculate the gradient vector $\nabla_w L=\left(\frac{\partial L}{\partial w_1},\ldots,\frac{\partial L}{\partial w_d}\right)^T.$
- Typically, first-order methods perform much better in huge-scale optimization, while second-order methods require too much memory.

The naive approach to get approximate values of gradients is **Finite differences** approach. For each coordinate, one can calculate the partial derivative approximation:

$$
\frac{\partial L}{\partial w_k}(w) \approx \frac{L(w + \varepsilon e_k) - L(w)}{\varepsilon}, \quad e_k = (0, \dots, 1, \dots, 0)
$$

 1 Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master's Thesis (in Finnish), Univ. Helsinki, 1970.

The naive approach to get approximate values of gradients is **Finite differences** approach. For each coordinate, one can calculate the partial derivative approximation:

$$
\frac{\partial L}{\partial w_k}(w) \approx \frac{L(w + \varepsilon e_k) - L(w)}{\varepsilon}, \quad e_k = (0, \dots, 1, \dots, 0)
$$

Question

If the time needed for one calculation of $L(w)$ is *T*, what is the time needed for calculating $\nabla_w L$ with this approach?

The naive approach to get approximate values of gradients is **Finite differences** approach. For each coordinate, one can calculate the partial derivative approximation:

$$
\frac{\partial L}{\partial w_k}(w) \approx \frac{L(w + \varepsilon e_k) - L(w)}{\varepsilon}, \quad e_k = (0, \dots, 1, \dots, 0)
$$

Question

If the time needed for one calculation of $L(w)$ is T, what is the time needed for calculating $\nabla_w L$ with this approach?

Answer 2*dT*, which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable, which means that you will have to choose between accuracy and stability.

The naive approach to get approximate values of gradients is **Finite differences** approach. For each coordinate, one can calculate the partial derivative approximation:

$$
\frac{\partial L}{\partial w_k}(w) \approx \frac{L(w + \varepsilon e_k) - L(w)}{\varepsilon}, \quad e_k = (0, \dots, 1, \dots, 0)
$$

Question

If the time needed for one calculation of $L(w)$ is T, what is the time needed for calculating $\nabla_w L$ with this approach?

Answer 2*dT*, which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable, which means that you will have to choose between accuracy and stability.

Theorem

There is an algorithm to compute $\nabla_w L$ in $\mathcal{O}(T)$ operations. ¹

 1 Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master's Thesis (in Finnish), Univ. Helsinki, 1970.

To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

$$
L(w_1, w_2) = w_2 \log w_1 + \sqrt{w_2 \log w_1}
$$

To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

$$
L(w_1, w_2) = w_2 \log w_1 + \sqrt{w_2 \log w_1}
$$

Let's draw a *computational graph* of this function:

$$
L(w_1,w_2)=w_2\log w_1+\sqrt{w_2\log w_1}
$$

Figure 2: Illustration of computation graph of primitive arithmetic operations for the function $L(w_1, w_2)$

To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

$$
L(w_1, w_2) = w_2 \log w_1 + \sqrt{w_2 \log w_1}
$$

Let's draw a computational graph of this function:

$$
L(w_1,w_2)=w_2\log w_1+\sqrt{w_2\log w_1}
$$

Figure 2: Illustration of computation graph of primitive arithmetic operations for the function $L(w_1, w_2)$

Let's go from the beginning of the graph to the end and calculate the derivative $\frac{\partial L}{\partial w_1}$.

Figure 3: Illustration of forward mode automatic differentiation

Function

 $w_1 = w_1, w_2 = w_2$

Figure 3: Illustration of forward mode automatic differentiation

Function

 $w_1 = w_1, w_2 = w_2$

Derivative
\n
$$
\frac{\partial w_1}{\partial w_1} = 1, \frac{\partial w_2}{\partial w_1} = 0
$$

 $f \rightarrow \min_{x,y,z}$ [Automatic differentiation](#page-1-0) \bullet 5

Figure 4: Illustration of forward mode automatic differentiation

Figure 4: Illustration of forward mode automatic differentiation

Function

 $v_1 = \log w_1$

Figure 4: Illustration of forward mode automatic differentiation

Function $v_1 = \log w_1$ **Derivative** $\frac{\partial v_1}{\partial w_1} = \frac{\partial v_1}{\partial w_1} \frac{\partial w_1}{\partial w_1} = \frac{1}{w_1} 1$

Figure 5: Illustration of forward mode automatic differentiation

Figure 5: Illustration of forward mode automatic differentiation

Function

 $v_2 = w_2v_1$

Figure 5: Illustration of forward mode automatic differentiation

Function

 $v_2 = w_2v_1$

Derivative $\frac{\partial v_2}{\partial w_1} = \frac{\partial v_2}{\partial v_1} \frac{\partial v_1}{\partial w_1} + \frac{\partial v_2}{\partial w_2} \frac{\partial w_2}{\partial w_1} = w_2 \frac{\partial v_1}{\partial w_1} + v_1 \frac{\partial w_2}{\partial w_1}$

Figure 6: Illustration of forward mode automatic differentiation

Figure 6: Illustration of forward mode automatic differentiation

Figure 6: Illustration of forward mode automatic differentiation

Function $v_3 = \sqrt{v_2}$

Derivative $\frac{\partial v_3}{\partial w_1} = \frac{\partial v_3}{\partial v_2} \frac{\partial v_2}{\partial w_1} = \frac{1}{2\sqrt{v_2}} \frac{\partial v_2}{\partial w_1}$

Figure 7: Illustration of forward mode automatic differentiation

Figure 7: Illustration of forward mode automatic differentiation

Function

 $L = v_2 + v_3$

Figure 7: Illustration of forward mode automatic differentiation

Function

 $L = v_2 + v_3$

Derivative $\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial v_2} \frac{\partial v_2}{\partial w_1} + \frac{\partial L}{\partial v_3} \frac{\partial v_3}{\partial w_1} = 1 \frac{\partial v_2}{\partial w_1} + 1 \frac{\partial v_3}{\partial w_1}$

Make the similar computations for $rac{\partial L}{\partial w_2}$

Figure 8: Illustration of computation graph of primitive arithmetic operations for the function $L(w_1, w_2)$

Figure 9: Illustration of forward mode automatic differentiation

Function

 $w_1 = w_1, w_2 = w_2$

Derivative
\n
$$
\frac{\partial w_1}{\partial w_2} = 0, \frac{\partial w_2}{\partial w_2} = 1
$$

Figure 10: Illustration of forward mode automatic differentiation

Function $v_1 = \log w_1$ **Derivative** $\frac{\partial v_1}{\partial w_2} = \frac{\partial v_1}{\partial w_2} \frac{\partial w_2}{\partial w_2} = 0 \cdot 1$

Figure 11: Illustration of forward mode automatic differentiation

Function

 $v_2 = w_2v_1$

Derivative $\frac{\partial v_2}{\partial w_2} = \frac{\partial v_2}{\partial v_1} \frac{\partial v_1}{\partial w_2} + \frac{\partial v_2}{\partial w_2} \frac{\partial w_2}{\partial w_2} = w_2 \frac{\partial v_1}{\partial w_2} + v_1 \frac{\partial w_2}{\partial w_2}$

Figure 12: Illustration of forward mode automatic differentiation

Function $v_3 = \sqrt{v_2}$

Derivative $\frac{\partial v_3}{\partial w_2} = \frac{\partial v_3}{\partial v_2} \frac{\partial v_2}{\partial w_2} = \frac{1}{2\sqrt{v_2}} \frac{\partial v_2}{\partial w_2}$

Figure 13: Illustration of forward mode automatic differentiation

Function

 $L = v_2 + v_3$

Derivative $\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial v_2} \frac{\partial v_2}{\partial w_2} + \frac{\partial L}{\partial v_3} \frac{\partial v_3}{\partial w_2} = 1 \frac{\partial v_2}{\partial w_2} + 1 \frac{\partial v_3}{\partial w_2}$

Forward mode automatic differentiation algorithm

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable *wk*,

i.e. $\frac{\partial v_N}{\partial w_k}$. This idea implies propagation of the gradient

with respect to the input variable from start to end, that is why we can introduce the notation:

Forward mode automatic differentiation algorithm

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable *wk*,

i.e. $\frac{\partial v_N}{\partial w_k}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that

is why we can introduce the notation:

$$
\overline{v_i} = \frac{\partial v_i}{\partial w_k}
$$

Figure 14: Illustration of forward chain rule to calculate the derivative of the function *L* with respect to *wk*.
Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable *wk*,

i.e. $\frac{\partial v_N}{\partial w_k}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that

is why we can introduce the notation:

$$
\overline{v_i} = \frac{\partial v_i}{\partial w_k}
$$

Figure 14: Illustration of forward chain rule to calculate the derivative of the function *L* with respect to *wk*.

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable *wk*,

i.e. $\frac{\partial v_N}{\partial w_k}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that

is why we can introduce the notation:

$$
\overline{v_i} = \frac{\partial v_i}{\partial w_k}
$$

Figure 14: Illustration of forward chain rule to calculate the derivative of the function *L* with respect to *wk*.

- For $i = 1, \ldots, N$:
	- Compute *vⁱ* as a function of its parents (inputs) x_1, \ldots, x_{t_i} :

$$
v_i = v_i(x_1, \ldots, x_{t_i})
$$

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable *wk*,

i.e. $\frac{\partial v_N}{\partial w_k}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that

is why we can introduce the notation:

$$
\overline{v_i} = \frac{\partial v_i}{\partial w_k}
$$

Figure 14: Illustration of forward chain rule to calculate the derivative of the function *L* with respect to *wk*.

 $f \rightarrow \min_{x,y,z}$ [Automatic differentiation](#page-1-0)

- For $i = 1, ..., N$:
	- Compute *vⁱ* as a function of its parents (inputs) x_1, \ldots, x_{t_i} :

 $v_i = v_i(x_1, \ldots, x_{t_i})$

• Compute the derivative $\overline{v_i}$ using the forward chain rule:

$$
\overline{v_i} = \sum_{j=1}^{t_i} \frac{\partial v_i}{\partial x_j} \frac{\partial x_j}{\partial w_k}
$$

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable *wk*,

i.e. $\frac{\partial v_N}{\partial w_k}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that

is why we can introduce the notation:

$$
\overline{v_i} = \frac{\partial v_i}{\partial w_k}
$$

Figure 14: Illustration of forward chain rule to calculate the derivative of the function *L* with respect to *wk*.

 $f \rightarrow \min_{x,y,z}$ [Automatic differentiation](#page-1-0)

- For $i = 1, ..., N$:
	- Compute *vⁱ* as a function of its parents (inputs) x_1, \ldots, x_{t_i} :

 $v_i = v_i(x_1, \ldots, x_{t_i})$

• Compute the derivative $\overline{v_i}$ using the forward chain rule:

$$
\overline{v_i} = \sum_{j=1}^{t_i} \frac{\partial v_i}{\partial x_j} \frac{\partial x_j}{\partial w_k}
$$

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable *wk*,

i.e. $\frac{\partial v_N}{\partial w_k}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that

is why we can introduce the notation:

• For $i = 1, ..., N$:

• Compute *vⁱ* as a function of its parents (inputs) x_1, \ldots, x_{t_i} :

 $v_i = v_i(x_1, \ldots, x_{t_i})$

• Compute the derivative $\overline{v_i}$ using the forward chain rule:

$$
\overline{v_i} = \sum_{j=1}^{t_i} \frac{\partial v_i}{\partial x_j} \frac{\partial x_j}{\partial w_k}
$$

Note, that this approach does not require storing all intermediate computations, but one can see, that for $\frac{\partial L}{\partial w_k}$ we need $\mathcal{O}(T)$ operations. This means, that for the whole gradient, we need $dO(T)$ operations, which is the same as for finite differences, but we do not have stability issues, or inaccuracies now (the formulas above are exact).

Figure 14: Illustration of forward chain rule to calculate the derivative of the function *L* with respect to *wk*.

There is another

We will consider the same function with a computational graph:

$$
L(w_1,w_2)=w_2\log w_1+\sqrt{w_2\log w_1}
$$

Figure 15: Illustration of computation graph of primitive arithmetic operations for the function $L(w_1, w_2)$

We will consider the same function with a computational graph:

$$
L(w_1,w_2)=w_2\log w_1+\sqrt{w_2\log w_1}
$$

Figure 15: Illustration of computation graph of primitive arithmetic operations for the function $L(w_1, w_2)$

Assume, that we have some values of the parameters *w*1*, w*² and we have already performed a forward pass (i.e. single propagation through the computational graph from left to right). Suppose, also, that we somehow saved all intermediate values of *vi*. Let's go from the end of the graph to the beginning and calculate the derivatives *∂L ∂L* $\frac{\partial L}{\partial w_1}, \frac{\partial L}{\partial w_2}$:

Figure 16: Illustration of backward mode automatic differentiation

Figure 16: Illustration of backward mode automatic differentiation

Figure 16: Illustration of backward mode automatic differentiation

$$
\frac{\partial L}{\partial L}=1
$$

Figure 17: Illustration of backward mode automatic differentiation

Figure 17: Illustration of backward mode automatic differentiation

Figure 17: Illustration of backward mode automatic differentiation

$$
\begin{aligned} \frac{\partial L}{\partial v_3} &= \frac{\partial L}{\partial L} \frac{\partial L}{\partial v_3}\\ &= \frac{\partial L}{\partial L} 1 \end{aligned}
$$

Figure 18: Illustration of backward mode automatic differentiation

Figure 18: Illustration of backward mode automatic differentiation

Figure 18: Illustration of backward mode automatic differentiation

$$
\frac{\partial L}{\partial v_2} = \frac{\partial L}{\partial v_3} \frac{\partial v_3}{\partial v_2} + \frac{\partial L}{\partial L} \frac{\partial L}{\partial v_2}
$$

$$
= \frac{\partial L}{\partial v_3} \frac{1}{2\sqrt{v_2}} + \frac{\partial L}{\partial L} 1
$$

Figure 19: Illustration of backward mode automatic differentiation

Figure 19: Illustration of backward mode automatic differentiation

Figure 19: Illustration of backward mode automatic differentiation

$$
\frac{\partial L}{\partial v_1} = \frac{\partial L}{\partial v_2} \frac{\partial v_2}{\partial v_1}
$$

$$
= \frac{\partial L}{\partial v_2} w_2
$$

Figure 20: Illustration of backward mode automatic differentiation

Figure 20: Illustration of backward mode automatic differentiation

Figure 20: Illustration of backward mode automatic differentiation

Derivatives

$$
\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial v_1} \frac{\partial v_1}{\partial w_1} = \frac{\partial L}{\partial v_1} \frac{1}{w_1} \qquad \qquad \frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial v_2} \frac{\partial v_2}{\partial w_2} = \frac{\partial L}{\partial v_1} v_1
$$

 $\rightarrow \min_{x,y,z}$ [Automatic differentiation](#page-1-0)

Backward (reverse) mode automatic differentiation

Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient $\nabla_w L$. Is it a free lunch? What is the cost of acceleration?

Backward (reverse) mode automatic differentiation

Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient ∇*wL*. Is it a free lunch? What is the cost of acceleration?

Answer Note, that for using the reverse mode AD you need to store all intermediate computations from the forward pass. This problem could be somehow mitigated with the gradient checkpointing approach, which involves necessary recomputations of some intermediate values. This could significantly reduce the memory footprint of the large machine-learning model.

Reverse mode automatic differentiation algorithm • **FORWARD PASS**

For $i = 1, ..., N$:

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to all inputs variable *w*,

i.e. $\nabla_w v_N = \left(\frac{\partial v_N}{\partial w_1}, \dots, \frac{\partial v_N}{\partial w_d} \right)^T$. This idea implies propagation of the gradient of the function with respect to the intermediate variables from the end to the origin, that is why we can introduce the notation:

$$
\overline{v_i} = \frac{\partial L}{\partial v_i} = \frac{\partial v_N}{\partial v_i}
$$

Figure 21: Illustration of reverse chain rule to calculate the derivative of the function *L* with respect to the node *vi*.

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to all inputs variable *w*,

i.e. $\nabla_w v_N = \left(\frac{\partial v_N}{\partial w_1}, \dots, \frac{\partial v_N}{\partial w_d} \right)^T$. This idea implies propagation of the gradient of the function with respect to the intermediate variables from the end to the origin, that is why we can introduce the notation:

$$
\overline{v_i} = \frac{\partial L}{\partial v_i} = \frac{\partial v_N}{\partial v_i}
$$

Figure 21: Illustration of reverse chain rule to calculate the derivative of the function *L* with respect to the node *vi*.

• **FORWARD PASS**

For $i = 1, ..., N$:

• Compute and store the values of *vⁱ* as a function of its parents (inputs)

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to all inputs variable *w*,

i.e. $\nabla_w v_N = \left(\frac{\partial v_N}{\partial w_1}, \dots, \frac{\partial v_N}{\partial w_d} \right)^T$. This idea implies propagation of the gradient of the function with respect to the intermediate variables from the end to the origin, that is why we can introduce the notation:

$$
\overline{v_i} = \frac{\partial L}{\partial v_i} = \frac{\partial v_N}{\partial v_i}
$$

Figure 21: Illustration of reverse chain rule to calculate the derivative of the function *L* with respect to the node *vi*.

• **FORWARD PASS**

For $i = 1, ..., N$:

- Compute and store the values of *vⁱ* as a function of its parents (inputs)
- **BACKWARD PASS**

For $i = N, \ldots, 1$:

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to all inputs variable *w*,

i.e. $\nabla_w v_N = \left(\frac{\partial v_N}{\partial w_1}, \dots, \frac{\partial v_N}{\partial w_d} \right)^T$. This idea implies propagation of the gradient of the function with respect to the intermediate variables from the end to the origin, that is why we can introduce the notation:

$$
\overline{v_i} = \frac{\partial L}{\partial v_i} = \frac{\partial v_N}{\partial v_i}
$$

Figure 21: Illustration of reverse chain rule to calculate the derivative of the function *L* with respect to the node *vi*.

• **FORWARD PASS**

For $i = 1, ..., N$:

• Compute and store the values of *vⁱ* as a function of its parents (inputs)

- **BACKWARD PASS**
	- For $i = N, \ldots, 1$:
		- Compute the derivative $\overline{v_i}$ using the backward chain rule and information from all of its children $(\text{outputs}) (x_1, \ldots, x_{t_i})$:

$$
\overline{v_i} = \frac{\partial L}{\partial v_i} = \sum_{j=1}^{t_i} \frac{\partial L}{\partial x_j} \frac{\partial x_j}{\partial v_i}
$$

Question

i,j

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive arithmetic operations? Suppose, you are needed to compute the jacobian $J = \begin{cases} \frac{\partial L_i}{\partial u} \end{cases}$ *∂w^j* \mathcal{L}

Figure 22: Which mode would you choose for calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive arithmetic operations? Suppose, you are needed to compute the jacobian $J = \begin{cases} \frac{\partial L_i}{\partial u} \end{cases}$ *∂w^j* \mathcal{L} *i,j*

Answer Note, that the reverse mode computational time is proportional to the number of outputs here, while the forward mode works proportionally to the number of inputs there. This is why it would be a good idea to consider the forward mode AD.

Figure 22: Which mode would you choose for calculating gradients there?

Figure 23: \clubsuit This graph nicely illustrates the idea of choice between the modes. The $n = 100$ dimension is fixed and the graph presents the time needed for Jacobian calculation w.r.t. *x* for $f(x) = Ax$

Question

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive arithmetic operations? Suppose, you are needed to compute the jacobian $J = \begin{cases} \frac{\partial L_i}{\partial u} \end{cases}$ *∂w^j* \mathcal{L} *i,j* . Note, that G is an arbitrary computational graph

Figure 24: Which mode would you choose for calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive arithmetic operations? Suppose, you are needed to compute the jacobian $J = \begin{cases} \frac{\partial L_i}{\partial u} \end{cases}$ *∂w^j* \mathcal{L} *i,j* . Note, that G is an arbitrary computational graph

Answer It is generally impossible to say it without some knowledge about the specific structure of the graph *G*. Note, that there are also plenty of advanced approaches to mix forward and reverse mode AD, based on the specific *G* structure.

Figure 24: Which mode would you choose for calculating gradients there?

Feedforward Architecture FORWARD

• $v_0 = x$ typically we have a batch of data *x* here as an input.

BACKWARD

Figure 25: Feedforward neural network architecture

Feedforward Architecture FORWARD

- $v_0 = x$ typically we have a batch of data *x* here as an input.
- For $k = 1, ..., t 1, t$:

BACKWARD

Figure 25: Feedforward neural network architecture
- $v_0 = x$ typically we have a batch of data *x* here as an input.
- For $k = 1, ..., t 1, t$:
	- $v_k = \sigma(v_{k-1}w_k)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where *b* is the batch size (for the single data point $b = 1$). While the weight matrix *w^k* of a *k* layer has a shape $n_{k-1} \times n_k$, where n_k is the dimension of an inner representation of the data.

BACKWARD

- $v_0 = x$ typically we have a batch of data *x* here as an input.
- For $k = 1, ..., t 1, t$:
	- $v_k = \sigma(v_{k-1}w_k)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where *b* is the batch size (for the single data point $b = 1$). While the weight matrix *w^k* of a *k* layer has a shape $n_{k-1} \times n_k$, where n_k is the dimension of an inner representation of the data.
- $L = L(v_t)$ calculate the loss function. **BACKWARD**

- $v_0 = x$ typically we have a batch of data *x* here as an input.
- For $k = 1, ..., t 1, t$:
	- $v_k = \sigma(v_{k-1}w_k)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where *b* is the batch size (for the single data point $b = 1$). While the weight matrix *w^k* of a *k* layer has a shape $n_{k-1} \times n_k$, where n_k is the dimension of an inner representation of the data.
- $L = L(v_t)$ calculate the loss function. **BACKWARD**
	- $v_{t+1} = L, \frac{\partial L}{\partial L} = 1$

- $v_0 = x$ typically we have a batch of data *x* here as an input.
- For $k = 1, ..., t 1, t$:
	- $v_k = \sigma(v_{k-1}w_k)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where *b* is the batch size (for the single data point $b = 1$). While the weight matrix *w^k* of a *k* layer has a shape $n_{k-1} \times n_k$, where n_k is the dimension of an inner representation of the data.
- $L = L(v_t)$ calculate the loss function. **BACKWARD**
	- $v_{t+1} = L, \frac{\partial L}{\partial L} = 1$
	- For *k* = *t, t* − 1*, . . . ,* 1:

- $v_0 = x$ typically we have a batch of data *x* here as an input.
- For $k = 1, ..., t 1, t$:
	- $v_k = \sigma(v_{k-1}w_k)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where *b* is the batch size (for the single data point $b = 1$). While the weight matrix *w^k* of a *k* layer has a shape $n_{k-1} \times n_k$, where n_k is the dimension of an inner representation of the data.
- $L = L(v_t)$ calculate the loss function. **BACKWARD**

•
$$
v_{t+1} = L, \frac{\partial L}{\partial L} = 1
$$

\n• For $k = t, t - 1, ..., 1$:
\n• $\frac{\partial L}{\partial v_k} = \frac{\partial L}{\partial v_{k+1}} \frac{\partial v_{k+1}}{\partial v_k}$
\n• $x_{n_k} = \frac{\partial L}{\partial x_{n_{k+1}} \partial v_{k+1}} \frac{\partial v_{k+1}}{\partial v_k}$

- $v_0 = x$ typically we have a batch of data *x* here as an input.
- For $k = 1, ..., t 1, t$:
	- $v_k = \sigma(v_{k-1}w_k)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where *b* is the batch size (for the single data point $b = 1$). While the weight matrix *w^k* of a *k* layer has a shape $n_{k-1} \times n_k$, where n_k is the dimension of an inner representation of the data.
- $L = L(v_t)$ calculate the loss function. **BACKWARD**

•
$$
v_{t+1} = L, \frac{\partial L}{\partial L} = 1
$$

\n• For $k = t, t - 1, ..., 1$:
\n• $\frac{\partial L}{\partial v_k} = \frac{\partial L}{\partial v_{k+1}} \frac{\partial v_{k+1}}{\partial v_k}$
\n• $\frac{\partial L}{\partial w_k} = \frac{\partial L}{\partial v_{k+1}} \frac{\partial v_{k+1}}{\partial v_k}$
\n• $\frac{\partial L}{\partial w_k} = \frac{\partial L}{\partial v_{k+1}} \frac{\partial v_{k+1}}{\partial w_k}$
\n• $x_{n_{k-1} \cdot n_k} = \frac{\partial L}{\partial v_{k+1}} \frac{\partial v_{k+1}}{\partial w_{k+1} \cdot v_{k+1}} = \frac{\partial L}{\partial w_{k+1} \cdot v_{k+1} \cdot v_{k+1}} = \frac{\partial L}{\partial w_{k+1} \cdot v_{k+1} \cdot v_{k$

Suppose, we have an invertible matrix *A* and a vector *b*, the vector *x* is the solution of the linear system $Ax = b$, namely one can write down an analytical solution $x = A^{-1}b$, in this example we will show, that computing all derivatives $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}, \frac{\partial L}{\partial x}$, i.e. the backward pass, costs approximately the same as the forward pass.

Figure 26: *x* could be found as a solution of linear system

Suppose, we have an invertible matrix *A* and a vector *b*, the vector *x* is the solution of the linear system $Ax = b$, namely one can write down an analytical solution $x = A^{-1}b$, in this example we will show, that computing all derivatives $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}, \frac{\partial L}{\partial x}$, i.e. the backward pass, costs approximately the same as the forward pass. It is known, that the differential of the function does not depend on the parametrization:

$$
dL=\left\langle \frac{\partial L}{\partial x}, dx \right\rangle=\left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle
$$

Figure 26: *x* could be found as a solution of linear system

Suppose, we have an invertible matrix *A* and a vector *b*, the vector *x* is the solution of the linear system $Ax = b$, namely one can write down an analytical solution $x = A^{-1}b$, in this example we will show, that computing all derivatives $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}, \frac{\partial L}{\partial x}$, i.e. the backward pass, costs approximately the same as the forward pass. It is known, that the differential of the function does not depend on the parametrization:

$$
dL=\left\langle \frac{\partial L}{\partial x}, dx \right\rangle=\left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle
$$

Given the linear system, we have:

Figure 26: *x* could be found as a solution of linear system

$$
Ax = b
$$

$$
dAx + Adx = db \rightarrow dx = A^{-1}(db - dAx)
$$

The straightforward substitution gives us:

$$
\left\langle \frac{\partial L}{\partial x},A^{-1}(db-dAx)\right\rangle =\left\langle \frac{\partial L}{\partial A},dA\right\rangle +\left\langle \frac{\partial L}{\partial b},db\right\rangle
$$

Figure 27: *x* could be found as a solution of linear system

Figure 27: *x* could be found as a solution of linear system

Figure 27: *x* could be found as a solution of linear system

Figure 27: *x* could be found as a solution of linear system

Sometimes it is even possible to store the result itself, which makes the backward pass even cheaper.

Suppose, we have the rectangular matrix $W \in \mathbb{R}^{m \times n}$, which has a singular value decomposition:

$$
W = U\Sigma V^T, \quad U^T U = I, \quad V^T V = I, \quad \Sigma = \text{diag}(\sigma_1, \dots, \sigma_{\min(m,n)})
$$

1. Similarly to the previous example:

 $W = U \Sigma V^T$ $dW = dU\Sigma V^T + Ud\Sigma V^T + U\Sigma dV^T$ $U^T dW V = U^T dU \Sigma V^T V + U^T U d\Sigma V^T V + U^T U \Sigma dV^T V$ $U^T dW V = U^T dU \Sigma + d\Sigma + \Sigma dV^T V$

2. Note, that $U^TU = I \rightarrow dU^TU + U^TdU = 0.$ But also $dU^TU = (U^TdU)^T$, which actually involves, that the matrix $U^T dU$ is antisymmetric:

$$
\left(U^T dU\right)^T + U^T dU = 0 \quad \to \quad \text{diag}(U^T dU) = (0, \dots, 0)
$$

The same logic could be applied to the matrix *V* and

$$
\text{diag}(dV^TV)=(0,\ldots,0)
$$

2. Note, that $U^TU = I \rightarrow dU^TU + U^TdU = 0.$ But also $dU^TU = (U^TdU)^T$, which actually involves, that the matrix $U^T dU$ is antisymmetric:

$$
(U^T dU)^T + U^T dU = 0 \quad \to \quad \text{diag}(U^T dU) = (0, \dots, 0)
$$

The same logic could be applied to the matrix *V* and

$$
\text{diag}(dV^TV)=(0,\ldots,0)
$$

3. At the same time, the matrix *d*Σ is diagonal, which means (look at the 1.) that

$$
\text{diag}(U^T dW V) = d\Sigma
$$

Here on both sides, we have diagonal matrices.

4. Now, we can decompose the differential of the loss function as a function of Σ - such problems arise in ML problems, where we need to restrict the matrix rank:

$$
dL = \left\langle \frac{\partial L}{\partial \Sigma}, d\Sigma \right\rangle
$$

= $\left\langle \frac{\partial L}{\partial \Sigma}, \text{diag}(U^T dW V) \right\rangle$
= tr $\left(\frac{\partial L}{\partial \Sigma}^T \text{diag}(U^T dW V) \right)$

5. As soon as we have diagonal matrices inside the product, the trace of the diagonal part of the matrix will be equal to the trace of the whole matrix:

$$
dL = \text{tr}\left(\frac{\partial L}{\partial \Sigma}^T \text{diag}(U^T dW V)\right)
$$

=
$$
\text{tr}\left(\frac{\partial L}{\partial \Sigma}^T U^T dW V\right)
$$

=
$$
\left\langle \frac{\partial L}{\partial \Sigma}, U^T dW V \right\rangle
$$

=
$$
\left\langle U \frac{\partial L}{\partial \Sigma} V^T, dW \right\rangle
$$

6. Finally, using another parametrization of the differential

$$
\left\langle U\frac{\partial L}{\partial \Sigma}V^T,dW\right\rangle =\left\langle \frac{\partial L}{\partial W},dW\right\rangle
$$

$$
\frac{\partial L}{\partial W} = U \frac{\partial L}{\partial \Sigma} V^T,
$$

This nice result allows us to connect the gradients $\frac{\partial L}{\partial W}$ and $\frac{\partial L}{\partial \Sigma}$.

• AD is not a finite differences

- AD is not a finite differences
- AD is not a symbolic derivative

- AD is not a finite differences
- AD is not a symbolic derivative
- AD is not just the chain rule

- AD is not a finite differences
- AD is not a symbolic derivative
- AD is not just the chain rule
- AD is not just backpropagation

DIFFERENTIATION SYMBOLIC AUTOMATIC SLOW FAST MANUAL : NUMERICAL **UNSTABLE**

- AD is not a finite differences
- AD is not a symbolic derivative
- AD is not just the chain rule
- AD is not just backpropagation
- AD (reverse mode) is time-efficient and numerically stable

DIFFERENTIATION

- AD is not a finite differences
- AD is not a symbolic derivative
- AD is not just the chain rule
- AD is not just backpropagation
- AD (reverse mode) is time-efficient and numerically stable
- AD (reverse mode) is memory inefficient (you need to store all intermediate computations from the forward pass).

Code

[Open In Colab](https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb) ♣

