
Automatic differentiation.

Daniil Merkulov

Introduction to higher-order optimization methods. Skoltech

} � 1

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Figure 1: This is not autograd



Problem

Suppose we need to solve the following problem:

L(w) → min
w∈Rd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇wL =
(

∂L
∂w1

, . . . , ∂L
∂wd

)T

.
• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods

require too much memory.

Automatic differentiation } � 3

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Problem

Suppose we need to solve the following problem:

L(w) → min
w∈Rd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇wL =
(

∂L
∂w1

, . . . , ∂L
∂wd

)T

.
• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods

require too much memory.

Automatic differentiation } � 3

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Problem

Suppose we need to solve the following problem:

L(w) → min
w∈Rd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇wL =
(

∂L
∂w1

, . . . , ∂L
∂wd

)T

.
• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods

require too much memory.

Automatic differentiation } � 3

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Problem

Suppose we need to solve the following problem:

L(w) → min
w∈Rd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇wL =
(

∂L
∂w1

, . . . , ∂L
∂wd

)T

.

• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods
require too much memory.

Automatic differentiation } � 3

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Problem

Suppose we need to solve the following problem:

L(w) → min
w∈Rd

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML
model (i.e. train a neural network).

• You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇wL =
(

∂L
∂w1

, . . . , ∂L
∂wd

)T

.
• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods

require too much memory.

Automatic differentiation } � 3

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Finite differences
The naive approach to get approximate values of gradients is Finite differences approach. For each coordinate, one
can calculate the partial derivative approximation:

∂L

∂wk
(w) ≈ L(w + εek) − L(w)

ε
, ek = (0, . . . , 1

k
, . . . , 0)

Question

If the time needed for one calculation of L(w) is T , what is the time needed for calculating ∇wL with this
approach?
Answer 2dT , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.

Theorem

There is an algorithm to compute ∇wL in O(T ) operations. 1

1Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic differentiation } � 4

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Finite differences
The naive approach to get approximate values of gradients is Finite differences approach. For each coordinate, one
can calculate the partial derivative approximation:

∂L

∂wk
(w) ≈ L(w + εek) − L(w)

ε
, ek = (0, . . . , 1

k
, . . . , 0)

Question

If the time needed for one calculation of L(w) is T , what is the time needed for calculating ∇wL with this
approach?

Answer 2dT , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.

Theorem

There is an algorithm to compute ∇wL in O(T ) operations. 1

1Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic differentiation } � 4

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Finite differences
The naive approach to get approximate values of gradients is Finite differences approach. For each coordinate, one
can calculate the partial derivative approximation:

∂L

∂wk
(w) ≈ L(w + εek) − L(w)

ε
, ek = (0, . . . , 1

k
, . . . , 0)

Question

If the time needed for one calculation of L(w) is T , what is the time needed for calculating ∇wL with this
approach?
Answer 2dT , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.

Theorem

There is an algorithm to compute ∇wL in O(T ) operations. 1

1Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic differentiation } � 4

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Finite differences
The naive approach to get approximate values of gradients is Finite differences approach. For each coordinate, one
can calculate the partial derivative approximation:

∂L

∂wk
(w) ≈ L(w + εek) − L(w)

ε
, ek = (0, . . . , 1

k
, . . . , 0)

Question

If the time needed for one calculation of L(w) is T , what is the time needed for calculating ∇wL with this
approach?
Answer 2dT , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.

Theorem

There is an algorithm to compute ∇wL in O(T ) operations. 1

1Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic differentiation } � 4

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation
To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

L(w1, w2) = w2 log w1 +
√

w2 log w1

Let’s draw a computational graph of this function:

Figure 2: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Let’s go from the beginning of the graph to the end and calculate the derivative ∂L

∂w1
.

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation
To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

L(w1, w2) = w2 log w1 +
√

w2 log w1

Let’s draw a computational graph of this function:

Figure 2: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Let’s go from the beginning of the graph to the end and calculate the derivative ∂L

∂w1
.

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation
To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

L(w1, w2) = w2 log w1 +
√

w2 log w1

Let’s draw a computational graph of this function:

Figure 2: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Let’s go from the beginning of the graph to the end and calculate the derivative ∂L

∂w1
.

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 3: Illustration of forward mode automatic differentiation

Function
w1 = w1, w2 = w2

Derivative
∂w1

∂w1
= 1,

∂w2

∂w1
= 0

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 3: Illustration of forward mode automatic differentiation

Function
w1 = w1, w2 = w2

Derivative
∂w1

∂w1
= 1,

∂w2

∂w1
= 0

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 4: Illustration of forward mode automatic differentiation

Function
v1 = log w1

Derivative
∂v1
∂w1

= ∂v1
∂w1

∂w1
∂w1

= 1
w1

1

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 4: Illustration of forward mode automatic differentiation

Function
v1 = log w1

Derivative
∂v1
∂w1

= ∂v1
∂w1

∂w1
∂w1

= 1
w1

1

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 4: Illustration of forward mode automatic differentiation

Function
v1 = log w1

Derivative
∂v1
∂w1

= ∂v1
∂w1

∂w1
∂w1

= 1
w1

1

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 5: Illustration of forward mode automatic differentiation

Function
v2 = w2v1

Derivative
∂v2
∂w1

= ∂v2
∂v1

∂v1
∂w1

+ ∂v2
∂w2

∂w2
∂w1

= w2
∂v1
∂w1

+ v1
∂w2
∂w1

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 5: Illustration of forward mode automatic differentiation

Function
v2 = w2v1

Derivative
∂v2
∂w1

= ∂v2
∂v1

∂v1
∂w1

+ ∂v2
∂w2

∂w2
∂w1

= w2
∂v1
∂w1

+ v1
∂w2
∂w1

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 5: Illustration of forward mode automatic differentiation

Function
v2 = w2v1

Derivative
∂v2
∂w1

= ∂v2
∂v1

∂v1
∂w1

+ ∂v2
∂w2

∂w2
∂w1

= w2
∂v1
∂w1

+ v1
∂w2
∂w1

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 6: Illustration of forward mode automatic differentiation

Function
v3 = √

v2

Derivative
∂v3
∂w1

= ∂v3
∂v2

∂v2
∂w1

= 1
2√

v2
∂v2
∂w1

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 6: Illustration of forward mode automatic differentiation

Function
v3 = √

v2

Derivative
∂v3
∂w1

= ∂v3
∂v2

∂v2
∂w1

= 1
2√

v2
∂v2
∂w1

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 6: Illustration of forward mode automatic differentiation

Function
v3 = √

v2

Derivative
∂v3
∂w1

= ∂v3
∂v2

∂v2
∂w1

= 1
2√

v2
∂v2
∂w1

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 7: Illustration of forward mode automatic differentiation

Function
L = v2 + v3

Derivative
∂L

∂w1
= ∂L

∂v2
∂v2
∂w1

+ ∂L
∂v3

∂v3
∂w1

= 1 ∂v2
∂w1

+ 1 ∂v3
∂w1

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 7: Illustration of forward mode automatic differentiation

Function
L = v2 + v3

Derivative
∂L

∂w1
= ∂L

∂v2
∂v2
∂w1

+ ∂L
∂v3

∂v3
∂w1

= 1 ∂v2
∂w1

+ 1 ∂v3
∂w1

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation

Figure 7: Illustration of forward mode automatic differentiation

Function
L = v2 + v3

Derivative
∂L

∂w1
= ∂L

∂v2
∂v2
∂w1

+ ∂L
∂v3

∂v3
∂w1

= 1 ∂v2
∂w1

+ 1 ∂v3
∂w1

Automatic differentiation } � 5

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Make the similar computations for ∂L

∂w2

Figure 8: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Automatic differentiation } � 6

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation example

Figure 9: Illustration of forward mode automatic differentiation

Function
w1 = w1, w2 = w2

Derivative
∂w1

∂w2
= 0,

∂w2

∂w2
= 1

Automatic differentiation } � 6

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation example

Figure 10: Illustration of forward mode automatic differentiation

Function
v1 = log w1

Derivative
∂v1
∂w2

= ∂v1
∂w2

∂w2
∂w2

= 0 · 1

Automatic differentiation } � 6

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation example

Figure 11: Illustration of forward mode automatic differentiation

Function
v2 = w2v1

Derivative
∂v2
∂w2

= ∂v2
∂v1

∂v1
∂w2

+ ∂v2
∂w2

∂w2
∂w2

= w2
∂v1
∂w2

+ v1
∂w2
∂w2

Automatic differentiation } � 6

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation example

Figure 12: Illustration of forward mode automatic differentiation

Function
v3 = √

v2

Derivative
∂v3
∂w2

= ∂v3
∂v2

∂v2
∂w2

= 1
2√

v2
∂v2
∂w2

Automatic differentiation } � 6

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation example

Figure 13: Illustration of forward mode automatic differentiation

Function
L = v2 + v3

Derivative
∂L

∂w2
= ∂L

∂v2
∂v2
∂w2

+ ∂L
∂v3

∂v3
∂w2

= 1 ∂v2
∂w2

+ 1 ∂v3
∂w2

Automatic differentiation } � 6

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 14: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :

• Compute vi as a function of its parents (inputs)
x1, . . . , xti :

vi = vi(x1, . . . , xti )
• Compute the derivative vi using the forward chain

rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation } � 7

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 14: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :

• Compute vi as a function of its parents (inputs)
x1, . . . , xti :

vi = vi(x1, . . . , xti )
• Compute the derivative vi using the forward chain

rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation } � 7

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 14: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :

• Compute vi as a function of its parents (inputs)
x1, . . . , xti :

vi = vi(x1, . . . , xti )
• Compute the derivative vi using the forward chain

rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation } � 7

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 14: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :
• Compute vi as a function of its parents (inputs)

x1, . . . , xti :

vi = vi(x1, . . . , xti )

• Compute the derivative vi using the forward chain
rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation } � 7

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 14: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :
• Compute vi as a function of its parents (inputs)

x1, . . . , xti :

vi = vi(x1, . . . , xti )
• Compute the derivative vi using the forward chain

rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation } � 7

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 14: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :
• Compute vi as a function of its parents (inputs)

x1, . . . , xti :

vi = vi(x1, . . . , xti )
• Compute the derivative vi using the forward chain

rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation } � 7

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Forward mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to some input variable wk,
i.e. ∂vN

∂wk
. This idea implies propagation of the gradient

with respect to the input variable from start to end, that
is why we can introduce the notation:

vi = ∂vi

∂wk

Figure 14: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wk.

• For i = 1, . . . , N :
• Compute vi as a function of its parents (inputs)

x1, . . . , xti :

vi = vi(x1, . . . , xti )
• Compute the derivative vi using the forward chain

rule:

vi =
ti∑

j=1

∂vi

∂xj

∂xj

∂wk

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative ∂L

∂wk
we need O(T ) operations.

This means, that for the whole gradient, we need dO(T )
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic differentiation } � 7

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching




Backward mode automatic differentiation
We will consider the same function with a computational graph:

Figure 15: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Assume, that we have some values of the parameters w1, w2 and we have already performed a forward pass
(i.e. single propagation through the computational graph from left to right). Suppose, also, that we somehow saved
all intermediate values of vi. Let’s go from the end of the graph to the beginning and calculate the derivatives
∂L

∂w1
,

∂L

∂w2
:

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation
We will consider the same function with a computational graph:

Figure 15: Illustration of computation graph of primitive arithmetic operations for the function L(w1, w2)

Assume, that we have some values of the parameters w1, w2 and we have already performed a forward pass
(i.e. single propagation through the computational graph from left to right). Suppose, also, that we somehow saved
all intermediate values of vi. Let’s go from the end of the graph to the beginning and calculate the derivatives
∂L

∂w1
,

∂L

∂w2
:

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 16: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂L
= 1

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 16: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂L
= 1

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 16: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂L
= 1

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 17: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v3
= ∂L

∂L

∂L

∂v3

= ∂L

∂L
1

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 17: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v3
= ∂L

∂L

∂L

∂v3

= ∂L

∂L
1

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 17: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v3
= ∂L

∂L

∂L

∂v3

= ∂L

∂L
1

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 18: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v2
= ∂L

∂v3

∂v3

∂v2
+ ∂L

∂L

∂L

∂v2

= ∂L

∂v3

1
2√

v2
+ ∂L

∂L
1

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 18: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v2
= ∂L

∂v3

∂v3

∂v2
+ ∂L

∂L

∂L

∂v2

= ∂L

∂v3

1
2√

v2
+ ∂L

∂L
1

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 18: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v2
= ∂L

∂v3

∂v3

∂v2
+ ∂L

∂L

∂L

∂v2

= ∂L

∂v3

1
2√

v2
+ ∂L

∂L
1

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 19: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v1
= ∂L

∂v2

∂v2

∂v1

= ∂L

∂v2
w2

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 19: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v1
= ∂L

∂v2

∂v2

∂v1

= ∂L

∂v2
w2

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 19: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂v1
= ∂L

∂v2

∂v2

∂v1

= ∂L

∂v2
w2

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 20: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂w1
= ∂L

∂v1

∂v1

∂w1
= ∂L

∂v1

1
w1

∂L

∂w2
= ∂L

∂v2

∂v2

∂w2
= ∂L

∂v1
v1

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 20: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂w1
= ∂L

∂v1

∂v1

∂w1
= ∂L

∂v1

1
w1

∂L

∂w2
= ∂L

∂v2

∂v2

∂w2
= ∂L

∂v1
v1

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward mode automatic differentiation example

Figure 20: Illustration of backward mode automatic differentiation

Derivatives

∂L

∂w1
= ∂L

∂v1

∂v1

∂w1
= ∂L

∂v1

1
w1

∂L

∂w2
= ∂L

∂v2

∂v2

∂w2
= ∂L

∂v1
v1

Automatic differentiation } � 9

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward (reverse) mode automatic differentiation

Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient
∇wL. Is it a free lunch? What is the cost of acceleration?

Answer Note, that for using the reverse mode AD you need to store all intermediate computations from the
forward pass. This problem could be somehow mitigated with the gradient checkpointing approach, which
involves necessary recomputations of some intermediate values. This could significantly reduce the memory
footprint of the large machine-learning model.

Automatic differentiation } � 10

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Backward (reverse) mode automatic differentiation

Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient
∇wL. Is it a free lunch? What is the cost of acceleration?
Answer Note, that for using the reverse mode AD you need to store all intermediate computations from the
forward pass. This problem could be somehow mitigated with the gradient checkpointing approach, which
involves necessary recomputations of some intermediate values. This could significantly reduce the memory
footprint of the large machine-learning model.

Automatic differentiation } � 10

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Reverse mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to all inputs variable w,

i.e. ∇wvN =
(

∂vN
∂w1

, . . . , ∂vN
∂wd

)T

. This idea implies
propagation of the gradient of the function with respect
to the intermediate variables from the end to the origin,
that is why we can introduce the notation:

vi = ∂L

∂vi
= ∂vN

∂vi

Figure 21: Illustration of reverse chain rule to calculate the
derivative of the function L with respect to the node vi.

• FORWARD PASS
For i = 1, . . . , N :

• Compute and store the values of vi as a function of
its parents (inputs)

• BACKWARD PASS
For i = N, . . . , 1:

• Compute the derivative vi using the backward chain
rule and information from all of its children
(outputs) (x1, . . . , xti ):

vi =
∂L

∂vi
=

ti∑
j=1

∂L

∂xj

∂xj

∂vi

Automatic differentiation } � 11

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Reverse mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to all inputs variable w,

i.e. ∇wvN =
(

∂vN
∂w1

, . . . , ∂vN
∂wd

)T

. This idea implies
propagation of the gradient of the function with respect
to the intermediate variables from the end to the origin,
that is why we can introduce the notation:

vi = ∂L

∂vi
= ∂vN

∂vi

Figure 21: Illustration of reverse chain rule to calculate the
derivative of the function L with respect to the node vi.

• FORWARD PASS
For i = 1, . . . , N :

• Compute and store the values of vi as a function of
its parents (inputs)

• BACKWARD PASS
For i = N, . . . , 1:

• Compute the derivative vi using the backward chain
rule and information from all of its children
(outputs) (x1, . . . , xti ):

vi =
∂L

∂vi
=

ti∑
j=1

∂L

∂xj

∂xj

∂vi

Automatic differentiation } � 11

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Reverse mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to all inputs variable w,

i.e. ∇wvN =
(

∂vN
∂w1

, . . . , ∂vN
∂wd

)T

. This idea implies
propagation of the gradient of the function with respect
to the intermediate variables from the end to the origin,
that is why we can introduce the notation:

vi = ∂L

∂vi
= ∂vN

∂vi

Figure 21: Illustration of reverse chain rule to calculate the
derivative of the function L with respect to the node vi.

• FORWARD PASS
For i = 1, . . . , N :

• Compute and store the values of vi as a function of
its parents (inputs)

• BACKWARD PASS
For i = N, . . . , 1:

• Compute the derivative vi using the backward chain
rule and information from all of its children
(outputs) (x1, . . . , xti ):

vi =
∂L

∂vi
=

ti∑
j=1

∂L

∂xj

∂xj

∂vi

Automatic differentiation } � 11

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Reverse mode automatic differentiation algorithm
Suppose, we have a computational graph vi, i ∈ [1; N ].
Our goal is to calculate the derivative of the output of
this graph with respect to all inputs variable w,

i.e. ∇wvN =
(

∂vN
∂w1

, . . . , ∂vN
∂wd

)T

. This idea implies
propagation of the gradient of the function with respect
to the intermediate variables from the end to the origin,
that is why we can introduce the notation:

vi = ∂L

∂vi
= ∂vN

∂vi

Figure 21: Illustration of reverse chain rule to calculate the
derivative of the function L with respect to the node vi.

• FORWARD PASS
For i = 1, . . . , N :

• Compute and store the values of vi as a function of
its parents (inputs)

• BACKWARD PASS
For i = N, . . . , 1:

• Compute the derivative vi using the backward chain
rule and information from all of its children
(outputs) (x1, . . . , xti ):

vi =
∂L

∂vi
=

ti∑
j=1

∂L

∂xj

∂xj

∂vi

Automatic differentiation } � 11

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Choose your fighter

Figure 22: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic
operations? Suppose, you are needed to compute the jacobian

J =
{

∂Li

∂wj

}
i,j

Answer Note, that the reverse mode computational time is
proportional to the number of outputs here, while the forward mode
works proportionally to the number of inputs there. This is why it
would be a good idea to consider the forward mode AD.

Automatic differentiation } � 12

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Choose your fighter

Figure 22: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic
operations? Suppose, you are needed to compute the jacobian

J =
{

∂Li

∂wj

}
i,j

Answer Note, that the reverse mode computational time is
proportional to the number of outputs here, while the forward mode
works proportionally to the number of inputs there. This is why it
would be a good idea to consider the forward mode AD.

Automatic differentiation } � 12

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Choose your fighter

Figure 23: ♣ This graph nicely illustrates the idea of choice between the modes. The n = 100 dimension is fixed and the
graph presents the time needed for Jacobian calculation w.r.t. x for f(x) = Ax

Automatic differentiation } � 13

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Choose your fighter

Figure 24: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic
operations? Suppose, you are needed to compute the jacobian

J =
{

∂Li

∂wj

}
i,j

. Note, that G is an arbitrary computational

graph

Answer It is generally impossible to say it without some knowledge
about the specific structure of the graph G. Note, that there are also
plenty of advanced approaches to mix forward and reverse mode AD,
based on the specific G structure.

Automatic differentiation } � 14

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Choose your fighter

Figure 24: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic
operations? Suppose, you are needed to compute the jacobian

J =
{

∂Li

∂wj

}
i,j

. Note, that G is an arbitrary computational

graph

Answer It is generally impossible to say it without some knowledge
about the specific structure of the graph G. Note, that there are also
plenty of advanced approaches to mix forward and reverse mode AD,
based on the specific G structure.

Automatic differentiation } � 14

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:

• vk = σ(vk−1wk). Note, that practically
speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.

BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:

• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 25: Feedforward neural network architecture

Automatic differentiation } � 15

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:

• vk = σ(vk−1wk). Note, that practically
speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.

BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:

• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 25: Feedforward neural network architecture

Automatic differentiation } � 15

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:
• vk = σ(vk−1wk). Note, that practically

speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.

BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:

• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 25: Feedforward neural network architecture

Automatic differentiation } � 15

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:
• vk = σ(vk−1wk). Note, that practically

speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:

• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 25: Feedforward neural network architecture

Automatic differentiation } � 15

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:
• vk = σ(vk−1wk). Note, that practically

speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:

• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 25: Feedforward neural network architecture

Automatic differentiation } � 15

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:
• vk = σ(vk−1wk). Note, that practically

speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:

• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 25: Feedforward neural network architecture

Automatic differentiation } � 15

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:
• vk = σ(vk−1wk). Note, that practically

speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:
• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 25: Feedforward neural network architecture

Automatic differentiation } � 15

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Feedforward Architecture
FORWARD

• v0 = x typically we have a batch of data
x here as an input.

• For k = 1, . . . , t − 1, t:
• vk = σ(vk−1wk). Note, that practically

speaking the data has dimension
x ∈ Rb×d, where b is the batch size (for
the single data point b = 1). While the
weight matrix wk of a k layer has a
shape nk−1 × nk, where nk is the
dimension of an inner representation of
the data.

• L = L(vt) - calculate the loss function.
BACKWARD

• vt+1 = L,
∂L

∂L
= 1

• For k = t, t − 1, . . . , 1:
• ∂L

∂vk
b×nk

=
∂L

∂vk+1
b×nk+1

∂vk+1
∂vk

nk+1×nk

• ∂L

∂wk
b×nk−1·nk

=
∂L

∂vk+1
b×nk+1

·
∂vk+1
∂wk

nk+1×nk−1·nk

Figure 25: Feedforward neural network architecture

Automatic differentiation } � 15

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Gradient propagation through the linear least squares

Figure 26: x could be found as a solution of linear
system

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write
down an analytical solution x = A−1b, in this example we will show,
that computing all derivatives ∂L

∂A
,

∂L

∂b
,

∂L

∂x
, i.e. the backward pass,

costs approximately the same as the forward pass.

It is known, that the differential of the function does not depend on
the parametrization:

dL =
〈

∂L

∂x
, dx

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Given the linear system, we have:

Ax = b

dAx + Adx = db → dx = A−1(db − dAx)

Automatic differentiation } � 16

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Gradient propagation through the linear least squares

Figure 26: x could be found as a solution of linear
system

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write
down an analytical solution x = A−1b, in this example we will show,
that computing all derivatives ∂L

∂A
,

∂L

∂b
,

∂L

∂x
, i.e. the backward pass,

costs approximately the same as the forward pass.
It is known, that the differential of the function does not depend on
the parametrization:

dL =
〈

∂L

∂x
, dx

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉

Given the linear system, we have:

Ax = b

dAx + Adx = db → dx = A−1(db − dAx)

Automatic differentiation } � 16

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Gradient propagation through the linear least squares

Figure 26: x could be found as a solution of linear
system

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write
down an analytical solution x = A−1b, in this example we will show,
that computing all derivatives ∂L

∂A
,

∂L

∂b
,

∂L

∂x
, i.e. the backward pass,

costs approximately the same as the forward pass.
It is known, that the differential of the function does not depend on
the parametrization:

dL =
〈

∂L

∂x
, dx

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Given the linear system, we have:

Ax = b

dAx + Adx = db → dx = A−1(db − dAx)

Automatic differentiation } � 16

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Gradient propagation through the linear least squares

Figure 27: x could be found as a solution of linear
system

The straightforward substitution gives us:〈
∂L

∂x
, A−1(db − dAx)

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉

〈
−A−T ∂L

∂x
xT , dA

〉
+

〈
A−T ∂L

∂x
, db

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Therefore:

∂L

∂A
= −A−T ∂L

∂x
xT ∂L

∂b
= A−T ∂L

∂x

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic differentiation } � 17

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Gradient propagation through the linear least squares

Figure 27: x could be found as a solution of linear
system

The straightforward substitution gives us:〈
∂L

∂x
, A−1(db − dAx)

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
〈

−A−T ∂L

∂x
xT , dA

〉
+

〈
A−T ∂L

∂x
, db

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉

Therefore:

∂L

∂A
= −A−T ∂L

∂x
xT ∂L

∂b
= A−T ∂L

∂x

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic differentiation } � 17

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Gradient propagation through the linear least squares

Figure 27: x could be found as a solution of linear
system

The straightforward substitution gives us:〈
∂L

∂x
, A−1(db − dAx)

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
〈

−A−T ∂L

∂x
xT , dA

〉
+

〈
A−T ∂L

∂x
, db

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Therefore:

∂L

∂A
= −A−T ∂L

∂x
xT ∂L

∂b
= A−T ∂L

∂x

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic differentiation } � 17

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Gradient propagation through the linear least squares

Figure 27: x could be found as a solution of linear
system

The straightforward substitution gives us:〈
∂L

∂x
, A−1(db − dAx)

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
〈

−A−T ∂L

∂x
xT , dA

〉
+

〈
A−T ∂L

∂x
, db

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Therefore:

∂L

∂A
= −A−T ∂L

∂x
xT ∂L

∂b
= A−T ∂L

∂x

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic differentiation } � 17

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Gradient propagation through the SVD

Suppose, we have the rectangular matrix W ∈ Rm×n, which has a singular value
decomposition:

W = UΣV T , UT U = I, V T V = I, Σ = diag(σ1, . . . , σmin(m,n))

1. Similarly to the previous example:

W = UΣV T

dW = dUΣV T + UdΣV T + UΣdV T

UT dW V = UT dUΣV T V + UT UdΣV T V + UT UΣdV T V

UT dW V = UT dUΣ + dΣ + ΣdV T V

Automatic differentiation } � 18

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Gradient propagation through the SVD

2. Note, that UT U = I → dUT U + UT dU = 0. But also dUT U = (UT dU)T ,
which actually involves, that the matrix UT dU is antisymmetric:

(UT dU)T + UT dU = 0 → diag(UT dU) = (0, . . . , 0)

The same logic could be applied to the matrix V and

diag(dV T V ) = (0, . . . , 0)

3. At the same time, the matrix dΣ is diagonal, which means (look at the 1.)
that

diag(UT dW V ) = dΣ

Here on both sides, we have diagonal matrices.

Automatic differentiation } � 19

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Gradient propagation through the SVD

2. Note, that UT U = I → dUT U + UT dU = 0. But also dUT U = (UT dU)T ,
which actually involves, that the matrix UT dU is antisymmetric:

(UT dU)T + UT dU = 0 → diag(UT dU) = (0, . . . , 0)

The same logic could be applied to the matrix V and

diag(dV T V ) = (0, . . . , 0)

3. At the same time, the matrix dΣ is diagonal, which means (look at the 1.)
that

diag(UT dW V ) = dΣ

Here on both sides, we have diagonal matrices.

Automatic differentiation } � 19

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Gradient propagation through the SVD

4. Now, we can decompose the differential of the loss function as a function of
Σ - such problems arise in ML problems, where we need to restrict the
matrix rank:

dL =
〈

∂L

∂Σ , dΣ
〉

=
〈

∂L

∂Σ , diag(UT dW V )
〉

= tr
(

∂L

∂Σ

T

diag(UT dW V )
)

Automatic differentiation } � 20

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Gradient propagation through the SVD

5. As soon as we have diagonal matrices inside the product, the trace of the
diagonal part of the matrix will be equal to the trace of the whole matrix:

dL = tr
(

∂L

∂Σ

T

diag(UT dW V )
)

= tr
(

∂L

∂Σ

T

UT dW V

)
=

〈
∂L

∂Σ , UT dW V
〉

=
〈

U
∂L

∂ΣV T , dW
〉

Automatic differentiation } � 21

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Gradient propagation through the SVD

6. Finally, using another parametrization of the differential〈
U

∂L

∂ΣV T , dW
〉

=
〈

∂L

∂W
, dW

〉
∂L

∂W
= U

∂L

∂ΣV T ,

This nice result allows us to connect the gradients ∂L

∂W
and ∂L

∂Σ .

Automatic differentiation } � 22

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


What automatic differentiation (AD) is NOT:

• AD is not a finite differences

• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-efficient and

numerically stable
• AD (reverse mode) is memory inefficient

(you need to store all intermediate
computations from the forward pass).

Figure 28: Different approaches for taking derivatives

Automatic differentiation } � 23

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative

• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-efficient and

numerically stable
• AD (reverse mode) is memory inefficient

(you need to store all intermediate
computations from the forward pass).

Figure 28: Different approaches for taking derivatives

Automatic differentiation } � 23

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative
• AD is not just the chain rule

• AD is not just backpropagation
• AD (reverse mode) is time-efficient and

numerically stable
• AD (reverse mode) is memory inefficient

(you need to store all intermediate
computations from the forward pass).

Figure 28: Different approaches for taking derivatives

Automatic differentiation } � 23

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation

• AD (reverse mode) is time-efficient and
numerically stable

• AD (reverse mode) is memory inefficient
(you need to store all intermediate
computations from the forward pass).

Figure 28: Different approaches for taking derivatives

Automatic differentiation } � 23

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-efficient and

numerically stable

• AD (reverse mode) is memory inefficient
(you need to store all intermediate
computations from the forward pass).

Figure 28: Different approaches for taking derivatives

Automatic differentiation } � 23

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-efficient and

numerically stable
• AD (reverse mode) is memory inefficient

(you need to store all intermediate
computations from the forward pass).

Figure 28: Different approaches for taking derivatives

Automatic differentiation } � 23

https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching


Code

Open In Colab ♣

Automatic differentiation } � 24

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://t.me/fminxyz
https://sites.google.com/view/valentinleplat/teaching

	Automatic differentiation

