
Empirical Study of TDγ Reinforcement Learning algorithm
Kirill Bobyrev
Optimization Class Project. MIPT

Reinforcement Learning at a glance

Reinforcement Learning is an area of machine learning concerned with how
agents should take actions in an environment so as to maximize the cumulative
reward.

Figure 1: Reinforcement Learning world model

Reinforcement Learning problem is typically modeled by Markov Decision Pro-
cess:

• S — set of states, it can be finite or infinite, discrete or continuous

• A — set of actions available to the agent

• Pa(s, s′) = P (St+1 = s′|St = s, At = a) — probabilities of action a in
state s leading to state s′

• ra(s, s′) = r(St+1 = s′|St = s, At = a) — numerical reward distribution,
a rule incorporated in the environment which indicates which reward is given
to the agent upon taking action a in state s and resulting in state s′

• γ ∈ [0, 1] — discount factor which controls the relative difference in impor-
tance between the future and present rewards

(a) Atari 2600 games (b) Sokoban

Figure 2: Sample environments

It is often assumed that the transitional probabilities and reward distribution
are not directly available to the agent. The goal of the Reinforcement Learning
agent is to maximize

∑∞
t=0 γ

tRat(St, St+1) by finding the optimal policy π :
S × A → [0, 1]. In order to achieve this goal, the agent typically learns value
function vπ(s) = E[R] = E[

∑∞
t=0 γ

tRt|S0 = s]

TD(γ) Algorithm

The main contribution of the studied paper is introducing the TD(γ) family
of algorithms, which eliminates the λ parameter. It is shown that TD(γ) out-
performs current state-of-the-art algorithms, such as TD(λ). The objective of
any value estimation algorithm is to minimize the following expression given a
set of trajectories sampled using a certain policy and a set of hyperparameters:

E(θ) = 1
2

∑
τ∈T

∑lτ−1
t=0 (R

γ
sτt
− V̌θ(sτt ))

2
.

Given: A discount factor γ, set of trajectories T , learning rate α

Ouput: θ — parameters of value function approximation

Let θ ← 0. (arbitrary V̌ parameters initialization)

for each trajectory τ ∈ T do
Store φ0 in memory (φt is feature vector of state in τ at time step t)

for u = 1 to lτ do (lτ stands for length of episode τ )

Store φu and Ru−1 in memory

δ ← 0

for t = 0 to u− 1 do
a← φt − γu−tφu — accumulate trace

b←
∑u−1

i=t γ
i−tRi — accumulate true rewards sequence for last u− t− 1 steps

w(u− t, lτ − t)←
(
∑u−t
i=1 γ

2(i−1))−1∑lτ−t
n=1 (

∑n
i=1 γ

2(i−1))−1
— setup a custom weighting function similar to TD(λ)’s

δ ← δ + w(u− t, lτ − t)[θ · a− b]φt
end for
θ ← θ − αδ (perform semi-gradient parameter update)

end for
Discard all φ and R from memory

end for

Figure 3: High-level overview of the experiment structure

Importance of value estimation

Even though the field has shifted towards Q-Learning which approximates qπ(w, a) =
E[R] = E[

∑∞
t=0Rt|St = s, At = a], TD(γ) can be used to improve the re-

sults of state-of-the-art algorithms. By definition, vπ(s) =
∑
a∈A qπ(s, a) and

hence knowing the dynamics of the environment one could efficiently navigate
it using value function. However, in most cases the transitional probabilities
are not known to the agent. More sophisticated methods like model-based Re-
inforcement Learning are able to deal with that issue. Despite the additional
complexity, such methods show good performance in cases where thorough
planning is crucial for the success of chosen approach. A great example of such
problem would be Sokoban where researchers used the environment model to
approximate model dynamics.

Experiment

Both TD(λ) and TD(γ) are benchmarked on rather simple environment 19-
Random-Walk. 19-Random-Walk consists of 19 non-terminal states situated
on a straight line and two terminal states at each end (one with −1 and one
with +1 reward, the available actions are: move left and move right). Such
choice is satisfied by the ability to solve Bellman equation fairly easy and obtain
true values for each state given a specific policy. The policy to be evaluated is
a random policy which uniformly samples action from A. TD(λ) and TD(γ)
produce θ so that these expectations can be approximated using V̌ . Both

algorithms are minimizing RMSE(v∗π, θ) =
√∑

s(v
∗
π(s)− V̌ (θ))2 and thus the

lower RMSE, the better algorithm’s performance.

(a) TD(λ) for different settings of λ (b) TD(γ) for different settings of γ

Figure 4: Performance comparison for the same number of episodes (100) and
different hyperparameters settings

As shown on Figure 4, TD(γ)’s performance is superior even for non-optimal
hyperparameters settings . However, the effect of having lower variance of value
estimate has its cost: while TD(λ) does not require the episode to terminate
before operating and even allows online setting, TD(γ) does not have any of
mentioned advantages which makes it unfeasible for continuous tasks.

Conclusion & Future Work

Novel TD(γ) algorithm was studied in the scope of this project. It was proven
to be able to outperform its commonly used precursor. Few key improvements
are yet to be made: TDγ(C) is another algorithm introduced by the studied
paper, which can be improved by introducing automated ways to choose C
and reducing the hyperparameter search space. TD(γ) can be studied in more
challenging settings and environments in order to test its feasibility in state-of-
the-art tasks.

References

[1] George Konidaris, Scott Niekum, Philip S. Thomas, TDγ: Re-evaluating
Complex Backups in Temporal Difference Learning , NIPS, 2011.

[2] Richard Sutton and Andrew Barto, Reinforcement Learning: An Introduc-
tion, MIT Press, Cambridge, MA, Second edition, 2018.

[3] Google Colab — IPython Notebook with experiments based on Shangtong
Zhang’s work, omtcvxyz/optimization-class-project — materials.

https://papers.nips.cc/paper/4472-td_gamma-re-evaluating-complex-backups-in-temporal-difference-learning.pdf
https://papers.nips.cc/paper/4472-td_gamma-re-evaluating-complex-backups-in-temporal-difference-learning.pdf
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://drive.google.com/file/d/1fmRALZn0-BRKlHWK_juP9sswUdpEtCZ0/view?usp=sharing
https://github.com/omtcvxyz/optimization-class-project

