Eye-tracking mouse control project

Mikhail Chekanov
Optimization Class Project. MIPT

Introduction

In this work a new approach in eye-tracking mouse control is presented. It
combines Viola-Jones face detection algorithm, variance projection function and
SIFT keypoints detector.

Viola-Jones face detection algorithm

Algorithm for robust face detection is described in Paul Viola's and Michael J
Jones’ work(3].

Method extracts various features from an image. Each feature is calculated by
adding and subtracting gray-scaled sub-window image pixels’ values according
to different templates(Haar-like features, see Fig. 1)

ﬁ i{!i

Figure 1: Example of Haar-like features

Importance of each feature is determined with AdaBoost algorithm. To accel-
erate face-recognition process features are divided in a set of groups. In the
first group there are few but most reliable features. Each next group consist
of a larger number of less important features than previous one. Therefore,
sub-window is analyzed with classifier processing the first group's features, if it
doesn't passes this classification it is discarded, otherwise it is sent for analysis
with second group and so on. If sub-window passes all classifications it is con-
sidered to be a face-like region. This approach is called Cascade of Classifiers

Viola-Jones algorithm could be used in detection regions of eyes, nose, mouth
etc. We use it to determine a small region of eye on image. After that we are
looking for specific eye points in this region.

Variance projection function

Guo-Can Feng and Pong Chi Yuen's work [1] describes a method for detecting
eye's key points with variance projection function(VPF).

Let I(x,y) is an image. For each row and column we could calculate mean
value:

m

maly) = — " 1(2,0)
x=1

n

my(x) = 3 I(,y)
y=1

Then variance projection functions are defined as:

5aly) = — 3 (1w, y) — ma(y))?
r=1

y(x) =~ S (I, y) — my(x))
y=1

The idea of eye's key points’ detection with this function is that VPF has a
significant increment in specific points of eye (see Fig. 2) Therefore, these

Joy O
points could be detected with maximums of VPF's derivatives: 05,;’ O‘y.
Jy = Ox
X
=
Pa(%2,52) Parabolic curve

e

P1(x1,71)

Ps(%6,¥6) P3(%3,¥3)

Pal 24,74)

Figure 2: Eye's key points

SIFT keypoints detector

Originally SIFT(Scale Invariant Feature Transform) was described in [2].

SIFT descriptor is used for detecting corners and blobs on image. It looks
for extreme of image's Laplacian of Gaussian points (in practice this value is
approximated with difference of two Gaussians (DoG) with various sigmas). It
also determines the size of blob measuring DoG at different scales(see Fig. 3).
Properly configured descriptor is guaranteed to find key point — center of pupil,
as pupil is a significant blob in eye region’s image. Moreover, pupil is the darkest
point of eye's image. Thus we could distinguish pupil's key point from others
comparing their pixels' value.

Scale ! ‘ﬁ ‘_ﬂ_ﬂ_ﬁ_t? ﬁ
o | >
= >

Srale
{first
GCLawve)

Difference of
Gaussian Gaussian (DOG)

Figure 3: SIFT's calculation of image's DoG

Algorithm

The code is presented here.

LEN = const;

x_array = [current x-position of mouse| * LEN;

y array = [current y-position of mouse] * LEN;

coef column = [const array];

while True do

| = input image;

face = the left of found with Haar Cascade face-like regions in [/ ;

leftEye = the left of found with Haar Cascade eye-like regions in face;

kps = SIFTDetectKeypoints(leftEye);

threshold = MAX VALUE;

res_kp = None ;

for kp in kps do

mean = mean value of 11 region of kp;

if mean < threshold then

threshold = mean;
res_kp = kp ;

end

end

Calculate my, my, oz, oy;

Calculate doy, doy;

left_border = position of the left big enough maximum for |doy|;

right_border = position of the right big enough maximum for
|doyl;

bottom border = position of the lowest big enough maximum
for |do|;

top_border = position of the highest big enough maximum for
|dozl;

new x = x-position of mouse + x-position of res kp -(left border
+ right_border) / 2;

new y = y-position of mouse + y-position of res kp -(top border
+ bottom border) / 2;

append (new x, x array) * coef column to x array;

remove x array|[0];

append (new.y, y array) * coef column to y array;

remove y array[0];

move mouse to (x array[-1], y array[-1]);

end

Algorithm 1: Mouse-control algorithm

Results

Kp:
I_neighbor{pic, (math.ceil(point.ptl[1]

wiKeypoints (pic, res
ize(img img =

Figure 4: Face, eyes and pupil detection

At Fig. 4 results of detection face-like region, eye-like regions and center of pupil
is presented. On gray-scaled enlarged eye images pupil’s keypoint detected by
SIFT detector is presented. The size of the circle represent determined size of

blob.

References

[1] Guo-Can Feng and Pong Chi Yuen. Variance projection function and its
application to eye detection for human face recognition. Pattern Recognition

Letters, 19(9):899-906, 1998.

[2] David G Lowe et al. Object recognition from local scale-invariant features.
In iccv, volume 99, pages 1150-1157, 1999.

[3] Paul Viola and Michael J Jones. Robust real-time face detection. Interna-
tional journal of computer vision, 57(2):137-154, 2004.

https://github.com/AlonsoQuixano/Eye-tracking-mouse-control

