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Introduction
The universal gradient method is known to be a good approach to numerical
optimization when one doesn’t have information about the Lipsitz constant of
the gradient. This adaptive method adjusts L at each step of the optimization
process and holds the following estimation of the number of calls to the oracle,
returning the gradient of the minimized function:

N = in f
ν∈[0,1]

(
2LνR1+ν

ε

) 2
1+ν

,

‖∇ f (x)−∇ f (y)‖2 ≤ Lν‖y− x‖ν

2 ,ν ∈ [0,1], L0 < ∞

But this estimation hasn’t been transferred on the stochastic case. The pur-
pose of the project is to investigate the effectiveness of the stochastic universal
gradient method in practice.

Algorithm

Adaptive Stochastic Gradient
(Spokoiny’s practical variant)

Input: lower estimate for the variance of the gradient D0 ≤ D,
accuracy 0< ε < D0

L , starting point x0∈Q, initial guess L−1 > 0
1: for k = 0,1, ... do
2: Set ik = 0. Set rk = d 2D0

Lk−1
εe, generate i.i.d. ξ i

K, i = 1, . . . ,rk

3: repeat
4: Set Lk = 2ik−1Lk−1

5: Calculate g̃(xk) =
1
rk ∑

rk

i=1 ∇ f (xk,ξ
i
k).

6: Calculate wk = xk− 1
2Lk

g̃(xk).

7: Calculate f̃ (xk) =
1
rk

∑
rk

i=1 f (xk,ξ
i
k) and

f̃ (wk) =
1
rk ∑

rk

i=1 f (wk,ξ
i
k).

8: Set ik = ik +1.
9: until

f̃ (wk)≤ f̃ (xk)+ 〈g̃(xk),wk− xk〉+ 2Lk
2 ‖wk− xk‖2

2+
ε

10.
10: Set xk+1 = wk, k = k+1.
11: end for

Optimization of deep neural networks
Let g(x) be a stochastic gradient of the function being minimized.

In every iteration we have to check if the following inequality is satisfied:

f (w)≤ f (x)+ 〈g(x),w− x〉+ 2L
2 ‖w− x‖2

2+
ε

10

Substituting w with the its definition expression, w = x− 1
2Lg(x)

We will get f (w)≤ f (x)− 1
2L‖g(x)‖

2
2+

2L
2

1
4L2‖g(x)‖2

2+
ε

10
or f (w)≤ f (x)− 1

4L‖g(x)‖
2
2+

ε

10

Consider f(x) to be a function of a range of matrices and vectors:

f (x) = f (W1,b1, . . . ,Wn,bn),

d f (W1,b1, . . . ,Wn,bn) =
n
∑

i=1
(

∂ f
∂Wi

dWi+
∂ f
∂bi

dbi)(W1,b1, . . . ,Wn,bn)

The goal is to represent d f in this fashion:

d f (x) = 〈g(x),dx〉

In this case g(x) is the gradient.

Let’s notice that in case of x is vector, x ∈ Rn, g(x) ∈ Rn

〈g(x),x〉=
n
∑

i=1
gi(x)xi

and so we do if X is a matrix: X ∈Mat(n×m), g(X) ∈Mat(n×m)

〈g(X),X〉= trg(X)X = g(X) ·X = ∑
n
i=1 ∑

m
j=1 gi j(X)Xi j

That means we may consider X as a vector (x11,x12, . . . ,x1m,x21, . . . ,xnm) of
dimension nm and the result will not change.

Such reasoning allows us to compute the second norm of the gradient in a
following way:

‖g(x)‖2
2 = ‖g(W1,b1, . . . ,Wn,bn)‖2

2 =
n
∑

i=1
(gW1(x) ·gW1(x)+ 〈gb1(x),gb1(x)〉)

Numerical Experiments
Linear Regression
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MNIST
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MNIST: Two-layer fc network
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CIFAR10
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CIFAR10: CNN
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Log of the Lipsitz constant of the gradient per batch

IMDb
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IMDb: 2-layer biLSTM
sgd 0.01
sgd 0.05
sug

0 50 100 150 200 250
# of batch

1.900

1.925

1.950

1.975

2.000

2.025

2.050

2.075

2.100

L

The Lipsitz constant of the gradient per batch

Further actions
Although the method seems to work well especialy on complex models, still there
are several circumstances that are to be overcomed. Doubled time of iteration
comparing to the other methods is among them. Besides to maintain the process
of optimization stable and avoid undesirable behaviour of the algorithm it was
decided to forbid the Lipsitz constant become smaller than 2. That is perhaps
an extra constraint not required in theory, so it would be preferable to discard
this limit. Still the example with IMDb dataset shows that the method may
help significantly decrease the number of optimization steps; the hypothesis is
that the solver outperforms others when used to learn complex models. Further
it is planned to check this idea on modern neural networks.

Links
You can watch the project here

https://nbviewer.jupyter.org/github/sverdoot/optimizer-SUG-torch/tree/master/

