
Homotopy choice in homotopy optimization framework
Stepanov Grigory
Optimization Class Project. MIPT

Introduction
One of the approaches to optimization problems is homotopy framework. It
helps to give local optimizer initial point that is close to local minimum of in-
termediate functions. Which should reduce amount of iterations and sometimes
increase the probability of finding global minimum. Some initial experinemts
shown that homotopy is also can ve useful in non-convex problems. The goal of
this study is to research how the choice of homotopy affect optimization process
and how it can deal with some famous non-convex problems.

Homotopy

Let target function be f : Rd → R, then homotopy h : Rd × [0, 1] → R, and
h( · , 1) = f ( · ), h( · , 0) = g( · ), where g( · ) is a function that is easy to
optimize. Futher g(x) = x∗x.

Restrictions
In case the target function can be any continious functional, the homotopy
choice should be rectricted. In this study only h( · ) = a(t)f ( · ) + b(t)g( · ),
where a, b : [0, 1] → [0, 1], a(0) = 0, a(1) = 1, b(0) = 1, b(1) = 0 are
considered.

Experimental set

• Homotopies:

– h(t, · ) = tf ( · ) + (1− t)g( · ) - linear

– h(t, · ) = t2f ( · ) + (1− t)2g( · ) - square

– h(t, · ) = t4f ( · ) + (1− t)4g( · ) - quad

– h(t, · ) = (0.5(2t3 − 1) + 0.5)f ( · ) + (1 − (0.5(2t3 − 1) + 0.5))g( · ) -
cubic

– h(t, x) = Eδx∈B(1−t)(0)
(x + δx) - smooth

• Target functions:

– Levi‘s: f (x, y) = sin2 3πx+(x− 1)2
(
1 + sin2 3πy

)
+(y − 1)2

(
1 + sin2 2πy

)
– Rosenbrock: f (x) =

∑n−1
i=1

[
100
(
xi+1 − x2i

)2
+ (1− xi)2

]
– Himmelblau’s: f (x, y) = (x2 + y − 11)2 + (x + y2 − 7)2

– Easom: f (x, y) = − cos (x) cos (y) exp
(
−
(
(x− π)2 + (y − π)2

))
– Cross-in-tray function: f (x, y) = −10−4

[∣∣∣∣sinx sin y exp(∣∣∣∣100− √x2+y2π

∣∣∣∣)∣∣∣∣ + 1

]0.1
• Local minimizer: Powell

Algorithm
We solve this problem using HOM:

Input: h, f, g, MAX_ITER, init

for iter = 1:MAX_ITER

init = Powell (h(f, g, t), init)

end

Output: min

Example

f = Levi‘s, h = smooth, MAXITER = 20
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Trajectory: (0, 0), (0.99, 1.07), (0.99, 1.14), (1.05, 0.98), (0.98, 1.03),
(0.96, 1.09), (0.96, 1.05), (1.02, 0.99), (1.15, 0.98), (1.04, 0.93),
(0.92, 0.96), (0.95, 1.01), (1.00, 1.01), (0.97, 0.99), (0.88, 1.00),
(0.87, 0.99), (0.86, 1.03), (0.96, 1.01), (0.98, 0.99), (0.99, 1.04), (1.0, 1.0))

Convergence

Example shows that homotopy can be effective in some non-convex problems.
It can be helpfull to reduce the amount of ”non-convexity”. But further sight
into this idea requires new essenses in convex analysis. Therefore this study
provides only experiments.

Experiment
In this research every HOM launch made 20 iterations. Metrics are the following:
total amount of local minimizer iterations and proximity of each intermediate
local minimum to target minimum.

Results
Total number of iterations local minimizer spent during HOM.

linear square quad cubic smooth no homo
Levi‘s 80 78 74 80 76 80
Rosenbrock 149 140 165 125 86 5
Himmelblau’s 84 84 80 83 77 9
Easom 59 58 54 53 75 5
Cross 80 78 70 80 71 80

Another metric is mean square distance from initial guess to real global mini-
mum. Which is more accurately evaluate the quality of homotopy, because it
shows how well homotopy bring algorithm closer to global minimum.

linear square quad cubic smooth
Levi‘s 4.45 4.52 4.6 3.6 0.54
Rosenbrock 4.56 4.57 4.57 4.56 5.66
Himmelblau’s 4.27 7.05 9.25 3.7 0.44
Easom 19.4 19.4 19.4 19.4 13.6
Cross 7.85 7.05 6.67 7.89 1.03

Red items didn‘t converged to global minimum.

Graphs on github.com/higheroplane/HomotopyOpt

Conclusion
In this study some homotopies were compared on several ”bad” functiouns
by two metrics: total amount of iterations local minimizer did during HOM
algorithm, and mean square of the distanse between initial guess and exact
global minimum. This study also shiows that non-convex problems might be
resolved by smothening and ”convexening” target functions using homotopy
framework.
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