
The error accumulation in the conjugate gradient method
for degenerate problem
Anton Ryabtsev
Optimization Class Project. MIPT

Introduction
Many problems coming from real applications turn out to be degenerate. Build
algorithms converging in argument for such tasks in general case turns out to
be impossible. The solution of the problem turns out to be unstable to data
inaccuracies.

Original problem
We confine ourselves to the simplest task:

Ax = b,

where exact values of A and b are not available [1], but only Ã and b̃ are
available, where

‖Ã− A‖ < δA, ‖b̃− b‖ < δb,

where ‖C‖2 =
√
λmax(CTC).

According to the task, you can build the following optimization task:

f (x) =
1

2
〈Ãx, x〉 − 〈b̃, x〉 → min

x∈Rn

In the case of non symmetric matrix we can make a replacement:

Asimmetric =
A + AT

2

Such a replacement leads to an equivalent minimization, since the value of the
objective function will not change from such a replacement.

Generation of ill-conditioned matrix for tests
We choose two numbers (small and big) and then we choose N

2 numbers in
ε-neighborhood. In this way we get a spectre for the matrix with big condition
number.
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Noisy A matrix generation

‖Ã− A‖2 < δA

Ã = A + δ · I,

Ã− A = δ · I

‖δ · I‖2 < δA

0 < δ < δA

δ = random.uniform(0, δA) or δ = random.gauss(0,
δA
3

)

Noisy b-vector generation

‖b‖2 =
√
b21 + b22 + ... + b2n

‖b̃− b‖2 =
√

(b̃1 − b1)2 + (b̃2 − b2)2 + ... + (b̃n − bn)2 < δb

‖b̃− b‖2 =
√

∆2
1 + ∆2

2 + ... + ∆2
n < δb

∆2
1 + ∆2

2 + ... + ∆2
n < δ2

b

∆1 = random.uniform(−δb, δb)

∆2 = random.uniform(−
√
δ2
b −∆2

1,
√
δ2
b −∆2

1)

∆3 = random.uniform(−
√
δ2
b −∆2

1 −∆2
2,
√
δ2
b −∆2

1 −∆2
2)

...

Algorithm
We solve this problem using CG-method:

1. Let i = 0 and xi = x0, assume di = d0 = −∇f (x0).

2. We calculate α minimizing f (xi + αidi) using the formula

αi = −di
T (Axi + b)

di
TAdi

3. Make the algorithm step:

xi+1 = xi + αidi

4. Update the direction: di+1 = −∇f (xi+1) + βidi, where βi is calculated by
the formula:

βi =
∇f (xi+1)TAdi

di
TAdi

5. Repeat steps 2-4 until the stopping criterion is fulfilled.

Hypothesis
For conjugate gradient method, as well as for their analogues — accelerated
methods, we can assume that if the noise in the calculation of the gradient is
additive, then it does not accumulate [2]. However, in our case the noise in
the gradient is not quite additive (with an increase in the norm of x, it should
increase proportionally). But if the generated sequence is limited, then it can
be considered as such.

Numerical example

Consider a numerical example with f (x) = 1
2〈Ãx, x〉 − 〈b̃, x〉 → min

x∈Rn
with

A ∈ RN×N and b ∈ RN . Entries of A and b are generated as independent
samples from a uniform distribution. A is symmetrical and positive definite.
Break criterion: The gradient norm at the point xk+1 is less than 10−3 or
more than 100 ·N iterations passed.

(a) N = 10, δA = δb = 10−5, x0 = ~0
Decision error: 1.08 · 10−6
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(b) N = 100, δA = δb = 10−5, x0 = ~0
Decision error: 2.23 · 10−6
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Gradient trajectory for noisy task
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Gradient trajectory for noisy task

N = 10, δA = δb = 10−5, x0 = random.uniform(−1000, 1000, N)
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Decision error: 1.12 · 10−7
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Results
A series of experiments were carried out with different sizes of matrices and
different noises. There is reason to believe that with noise, less than a certain
value, the method will converge anyway, and the faster, the less noise. You can
see code here [3].
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