
The Thomson problem
Elvira Zainulina
Optimization Class Project. MIPT

Introduction
The objective of the Thomson problem is to determine the minimum electrostatic
potential energy configuration of N electrons constrained to the surface of a unit
sphere that repel each other with a force given by Coulomb’s law.

The physical system embodied by the Thomson problem is a special case of one
of eighteen unsolved mathematics problems proposed by the mathematician Steve
Smale ”Distribution of points on the 2-sphere”. However, the Thomson problem
was analytically solved in several cases: N ∈ 2, 3, 4, 5, 6, 12.

The similar problem can be posed for spaces of bigger dimensions or spaces with
non-euclidean geometry. In this field analytical solutions exist for 8D N = 240, 24D
N = 196560, arbitrary dimension D and N = D + 1, 2D.

Optimization problem
The solution of each N -electron problem is obtained when the N -electron configu-
ration constrained to the surface of a sphere of unit radius, r = 1, yields a global
electrostatic potential energy minimum, U(N).

The electrostatic interaction energy occurring between each pair of electrons of equal
charges ( ei = ej = e, with e the elementary charge of an electron) is given by
Coulomb’s Law,

Uij = ke
eiej
rij

.

Consequently, the optimization problem is:

minimize
∑N
i 6=j

1
‖xi−xj‖

subject to xi ∈ RD ‖xi‖ = 1 1 ≤ i ≤ N

This conditional optimization problem is not convex, as although the objective func-
tion is convex, the set is not. That causes difficulties in finding global minimums.
With an increase in the number of charges, the number of metastable states, i.e.
local minimums, increases exponentially.

Existing solutions
2D Regular polygons.

3D Minimum energy configurations have been rigorously identified in only a handful
of cases: N = 2 - antipodal points; N = 3 - an equilateral triangle;

N = 4 N = 4 N = 8 N = 12

regular tetrahedron triangular dipyramid regular octahedron regular icosahedron

Proof of these solutions are in the article ”Extreme locations of points on the sphere”
(N. N. Andreev, V. A. Yudin), except for N = 5. For N = 5, a mathematically
rigorous computer-aided solution was reported in 2010.

For other N (up to 972) solutions have been got numerically[3].

N-D It was proven that the arrangement of 240 charges in case of 8D forms the
construction of Korkin-Zolotarev[1].

In case of 24D 196560 charges constitute the Leech lattice[2].

In case of the arbitrary dimension D, D + 1 charges assemble simplex and 2 · D
charges turn out to be vertices of an octahedron[2].

Approach to the solution
3 methods were applied to solve this problem. The first one is gradient descent that
includes all charges. The second one is gradient descent that includes one charge,
often the worst one. The third one is stochastic gradient descent.

The aim was to compare first these methods and find the algorithm that solves the
problem better and faster than others.

Algorithm
w is a charge vector.

Algorithm GD:

1: check(w) . If some charges locate too close to each other,
. randomly generate a new arrangement

2: err = 1.0
3: while err > 10−50 do
4: wnew = gr step(w, η, U(w), dU(w))
5: err = |U(w)− U(wnew)|
6: w = wnew
7: return traj w, U(w)

Algorithm DMK:

1: err = 1.0
2: while not err ≤ 10−50 5 times in a row do
3: cand = worst elem(w) . the one that experiences

. the greatest force from the rest charges
4: wnew = w
5: wnew[cand] = gr step(w[cand], η, Uelem(w[cand]), F (w[cand]))
6: if U(wnew) ≥ U(w) then
7: cand = random()
8: wnew[cand] = gr step(w[cand], η, Uelem(w[cand]), F (w[cand]))

9: err = |U(w)− U(wnew)|
10: w = w1

11: return traj w, U(w)

Gr step(x, func, dfunc):

1: α = η
2: err = 1.0
3: while err ≥ 10−14 do
4: xnew = normalized(x− α · dfunc)
5: err = func(xnew)− func(x)
6: α = α/2

7: return x

The algorithm SGD has the same structure as the algorithm GD and the stop criterion
as the algorithm DMK. There are only some slight differs in gr step function. The
input for it is new functions Usigma and dUsigma, which calculate U and dU only
for randomly chosen part of all charges.

Comparison of the algorithms
At first, the number of steps required for convergence of SGD was compared for
3 values of the probability parameter: 0.1, 0.5, 0.9. As it can be seen from the
following graph, the probability parameter 0.5 gives relatively better convergence rate
for all numbers of charges. This graph also shows the number of steps for GD. GD
requires less number of steps than SGD, except for a few points. Therefore, it is more
preferable.
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The second graph shows that DMK is the least effective algorithm.
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Comparison with proven results
2D As expected, all obtained arrangements of charges form regular polygons.

 N=10  N=40  N=70 N=100

3D Arrangements of charges obtained by GD completely coincide with analytical
solutions:

N = 3 N = 4 N = 5 N = 8 N = 12

For other numbers of charges up to 50 obtained energies correspond to existing
numerical results[3]. This comparison can be found in the supplementary materials[4].

N −D The algorithms can be applied to solving the problem in different dimensions.
However, obtained results can’t be evaluated properly.

Conclusion
Proposed algorithms for solving the Thomson problem gave results corresponding to
existing and proven ones. Therefore, its results for other dimensions are likely to be
the truth. For numerical solutions, GD and SGD with p = 0.5 are more preferable,
as they have to make fewer steps to converge than others. Improvements for these
algorithms can be made by changing the method of choosing the gradient step.
However, the main difficulty in this problem consists in the existence of many local
minimums. Thus, algorithms should be developed to be able to account for it.
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