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Introduction

Symmetric positive definite (SPD) matrices have shown powerful representa-
tion abilities of encoding image and video information. In computer vision
community, the SPDmatrix representation has been widely employed in many
applications, such as face recognition (e.g.Pang, Yuan, and Li2008; Huang et
al. 2015; Wu et al. 2015; Li et al. 2015), object recognition (Tuzel, Porikli, and
Meer 2006; Jaya-sumana et al. 2013; Harandi, Salzmann, and Hartley 2014;
Yin et al. 2016), action recognition (Harandi et al. 2016), and visual tracking
(Wu et al. 2015).

The SPD matrices form a Riemannian manifold, where the Euclidean distance
is no longer a suitable metric. Previous works on analyzing the SPD manifold
mainly fall into two categories: the local approximation method and the kernel
method.

However, both local approximation and kernel methods face two problems. First,
the SPD matrices are high dimensional, which brings the problem of high com-
putational cost. Second, the vectorization operation on SPD matrices might
giverise to the distortion of the manifold geometrical structure.

Motivated by achievements of deep networks, we advocate modeling the non-
linear mapping which reduces the dimensionality of high dimensional SPD ma-
trices via a deep neural network.

Basic blocks
We introduce two basic layers, i.e., the 2D fully connected layer and the sym-
metrically clean layer, to realize dimension reductionand non-linear operation,
respectively.

• Y = WTXW - 2D fully connected layer

• Symmetrically Clean Layer - zero set of symmetric elements (matrix is still
SPD)

ReLU operation is used here for simplicity. The ReLU operation assigns all the
negative elements in the SPD matrix to zero. The principal diagonal elements
of an SPD matrix will be positive forever, so the ReLU operation is a suitable
choice.

Encoder approach
Our approach is the build coder and decoder for symmetric positive-semidefinite
laplacian matrix of graph, consisted of basic block from previous paragraph.
Formally, we are going to solve next problem:

minimizeθ,ω
∑

s(‖x− f (g(x|ω)|θ)‖)

where f and g are decoder and encoder respectively.

The following models for encoding will be considered:

• Simple Autoencoder

• Variational Autoencoder

• Convolutional Autoncoder

• Encoder based on basic blocks

Method
We solve this problem using an Adam and MSELoss

encoder_g = {Linear2D, SymmetricallyClean, Tanh}

decoder_f = {Linear2D, SymmetricallyClean, ReLU}

optimizer = Adam()

criterion = MSELoss()

for iter = 1:MAX_ITER

batch_a = decoder_f(encoder_g(batch))

loss = criterion(batch_a, batch)

loss.backward()

optimizer.step()

end
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Experiments setup

For experiments we’ll use graph datasets MUTAG consisted of ≈ 200 points
with two labels and synthetic dataset of SPD matrixes.

After building embeddings for graphs classification problem will be considered
on MUTAG. For synthetic dataset there are next problem: using embeddings
of SPD matrix predict value of it’s determenant (ideally faster than common
algorithm).

Example of builded embeddings: decoding embeddings between first and last
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Results

Table 1: Min loss value (MSE) for method

Dataset Simple AE VAE Conv AE BB AE
MUTAG 1.8 - 2.3 0.04
Synthetic SPD 103.6 - 102.4 103.2
Determenant 2.6 - 2.4 2.2

Difference between Determenant and Synthetic SPD tasks models of encoder
and predictor is in Synthetic SPD they were train separately, but in Determenant
it’s one model.

It can be seen, that all models failed on Determenant and Synthetic SPD tasks,
but on spefic dataset MUTAG matrix model shown significantly better results.
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Table 2: Classification results for mutag dataset

precision recall f1-score
none mutag 0.82 0.91 0.86
mutag 0.75 0.56 0.64
avg 0.79 0.8 0.79

Conclusion
We have constructed a deep neural network which projects SSPD Laplacian
matrices to a more discriminative low dimensional SPD manifold. Experiments
on several graph datasets showed the effectiveness of the proposed network.
This technique can be used for constructing low dimensional embeddings for
graph structures. Moreover, this approach was tested on SPD matrix in general
and it failed.
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