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Introduction

The most well-known minimization technique for unconstrained problems is New-
tons Method. In each iteration, the step update is 1 = x5 — (szk) V1.
wever, the inverse of the Hessian has to be calculated in every iteration so it takes
@, (ng) Moreover, in some applications, the second derivatives may be unavailable.
One fix to the problem is to use a finite difference approximation to the Hessian.

We consider solving the nonlinear unconstrained minimization problem
min f(z),x € R

Let's consider the following quadratic model of the objective function

my.(p) = fr. + kaTer %ka, where B} = Bg,Bk >~ 0isann Xn

The minimizer p;. of this convex quadratic model p;. = —B]€_1ka is used as the
search direction, and the new iterate is

Ty = Tk + apg, let s, = apyg

The general structure of quasi-Newton method can be summarized as follows

e Given z(, By(or Hy), k — 0;

e For £ =0,1,2,...
Evaluate gradient g;..
Calculate s;. by line search or trust region methods.
Tlt] < T + Sk

Yk < 9k+1 — 9k
Update B}, | or Hj 1 according to the quasi-Newton formulas.

End(for)

Basic requirement in each iteration, i.e., By.si. = y;. (or Hpy. = s;.)

Method | Advantages Disadvantages
BFGS
e Hp > 0 hence it Hy > 0 o ygsk ~ (0 formula produce bad
e self correcting property if Wolfe| results
chosen e sensitive to round-off error
e superlinear convergence e sensitive to inaccurate line search
e can get stuck on a saddle point
for the nonlinear problem
DFP
recting large eigenvalues of ma- e sensitive to inaccurate line
trices <earch
PSR e can get stuck on a saddle point
e superlinear convergence for nonlinear problem
SR1
e garantees to be By, ;1 > 0 even
if s;.y;. > 0 doesn't satisfied
e very good approximations to the
Hessian matrices, often better
than BFGS

Quasi-Newton Formulas for Optimization

BFGS
min || H — Hell Hy 1 = (I — pspyp ) Hy (I — pypsy,) + psisy,
st H=H", Hy;. = s;. where p = Tl
Yk Ok T T
_ _ DBisesi Br | ykhi
Biy1 = By st Bisk + Ui Sk
DFP
min || B — Byl Biy1 = (I —vypst ) Hp (I = vs,y; ) + Uiy

st B =BT Bsp = y;.

where v = e

Hyyytb Hy  spsi
H = H; — k% Tk
k+1 k vl Hiyx yl sy

PSB
_ T _ T
minHB — BkH, Biy, = B — (Y Bk8k>8ksﬂTLj:(yk Bysy) 1
T k
s.t (B — By) = (B — Bk) , _i_Sk(yk—BkSk)SkSZ
BSk — yk (S%Sk)2 . .
sp—H +yr(sp—H
Hi., = Hj — (8% kyk)yz,fgf( e Hiy)
sk(sk—Hiye)yry;
(Vi uk)?
SR1
_ _ T
Biy1 = By +ovvl, By, = B + (W <§kki%(l§iz>T€:Sk) |
Ss.t Bk+18k = Yk Hk+1 — H, + (sp—Hyi) (sp—Hpyp) "

(sk—Hiyr) ' yi

Line Search vs. Trust Region

e Line search (strong Wolfe conditions)
flap + appr) < flag) + capVipy,
f(zg + cgpr) okl < |Vl

e Trust region

Both direction and step size find from solving
min,ern mi(p) = fi, + VIEp+ 5B st |pl] < Ay,

Results

Distribution of successfully solved problems (line search)

Distribution of successfully solved problems (trust region)
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Proportion of problems where have been success-|in more than square under plot of

fully found global minimizer in more than half of all|0.99 launches | performance
launches function

profile

Strategy BFGS DFP PSB SR1 Total

LS 0.21/0.1212.58|0.16|0.08 ' 2.54 10.09 |0.05/2.66 0.09 0.05 2.97 0.07

0.04

Numerical Experiment

e All quasi-newton methods (BFGS,DFP, PSB, SR1) with two strategies (line
search, trust region) were implemented in Python (overall 8 algorithms)

e 165 various N-d(NN > 2) strong benchmark problems

e For each algorithm, all problems were launched from the random point of domain
100 times and results were averaged

Examples of benchmark problems

NewFunction02 Test Function

CrossinTray Test Function

TR 0.18/0.12/12.93/0.16 0.1 [2.91/0.19/0.14 2.93 0.11 0.06|2.83|0.1

Performance evaluation: ns - number of solvers, n, - number of problems, %5 ) -

tsp
min{ts ,:s€5'}

ps(T) = nlsize{p 1 < p<mny, log(rsy < 7)} - defines the probability for
P

time, rsp = - performance profile function

solver s that the performance ratio 75 is within a factor 7 of the best possible
ratio

Performanse profile, line search, CPU time plot Performanse profile, trust region, CPU time plot
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Conclusions and Further Work

e Trust region based strategy for all methods(except BFGS) successfully solved
more problems than line search. It's square metric also showed better results

e Though SR1 solved the least amount of problems it founded solution faster for
line search

e Further, one may add to comparison L-BFGS-B

Source code of this work is available here [3]
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