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Introduction
The most well-known minimization technique for unconstrained problems is New-
tons Method. In each iteration, the step update is xk+1 = xk −

(
∇2fk

)
∇fk.

wever, the inverse of the Hessian has to be calculated in every iteration so it takes
O
(
n3
)

. Moreover, in some applications, the second derivatives may be unavailable.
One fix to the problem is to use a finite difference approximation to the Hessian.

We consider solving the nonlinear unconstrained minimization problem

min f (x), x ∈ R

Let’s consider the following quadratic model of the objective function

mk(p) = fk +∇fTk p +
1
2Bkp, where Bk = BTk , Bk � 0 is an n× n

The minimizer pk of this convex quadratic model pk = −B−1k ∇fk is used as the
search direction, and the new iterate is

xk+1 = xk + αpk, let sk = αpk
The general structure of quasi-Newton method can be summarized as follows

• Given x0, B0(or H0), k → 0;

• For k = 0, 1, 2, . . .

Evaluate gradient gk.

Calculate sk by line search or trust region methods.

xk+1← xk + sk
yk ← gk+1 − gk
Update Bk+1 or Hk+1 according to the quasi-Newton formulas.

End(for)

Basic requirement in each iteration, i.e., Bksk = yk (or Hkyk = sk)

Quasi-Newton Formulas for Optimization

BFGS

min ||H −Hk||,
s.t H = HT , Hyk = sk

Hk+1 = (I − ρskyTk )Hk(I − ρyks
T
k ) + ρsks

T
k

where ρ = 1
yTk sk

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
DFP

min ||B −Bk||,
s.t B = BT , Bsk = yk

Bk+1 = (I − γyksTk )Hk(I − γsky
T
k ) + γyky

T
k

where γ = 1
yTk sk

Hk+1 = Hk −
Hkyky

T
kHk

yTkHkyk
+
sks

T
k

yTk sk
PSB

min ||B −Bk||,
s.t (B −Bk) = (B −Bk)T ,
Bsk = yk

Bk+1 = Bk −
(yk−Bksk)s

T
k+sk(yk−Bksk)

T

sTk sk
+

+
sk(yk−Bksk)sks

T
k

(sTk sk)
2

Hk+1 = Hk −
(sk−Hkyk)y

T
k+yk(sk−Hkyk)

T

yTk yk
+

+
sk(sk−Hkyk)yky

T
k

(yTk yk)
2

SR1

Bk+1 = Bk + σννT ,
s.t Bk+1sk = yk

Bk+1 = Bk +
(yk−Bksk)(yk−Bksk)

T

(yk−Bksk)Tsk
,

Hk+1 = Hk +
(sk−Hkyk)(sk−Hkyk)

T

(sk−Hkyk)Tyk

Method Advantages Disadvantages
BFGS

• H0 � 0 hence if H0 � 0

• self correcting property if Wolfe
chosen

• superlinear convergence

• yTk sk ≈ 0 formula produce bad
results

• sensitive to round-off error

• sensitive to inaccurate line search

• can get stuck on a saddle point
for the nonlinear problem

DFP
• can be highly inefficient at cor-

recting large eigenvalues of ma-
trices

• sensitive to round-off error

• sensitive to inaccurate line
search

• can get stuck on a saddle point
for nonlinear problem

PSB
• superlinear convergence

SR1
• garantees to be Bk+1 � 0 even

if skyk > 0 doesn’t satisfied

• very good approximations to the
Hessian matrices, often better
than BFGS

Line Search vs. Trust Region

• Line search (strong Wolfe conditions)

f (xk + αkpk) ≤ f (xk) + c1αk∇Tk pk
|f (xk + αkpk)

Tpk| ≤ c2|∇fTk pk|
• Trust region

Both direction and step size find from solving

minp∈Rnmk(p) = fk +∇fTk p +
1
2Bkp s.t ||p|| ≤ ∆k

Numerical Experiment

• All quasi-newton methods (BFGS,DFP, PSB, SR1) with two strategies (line
search, trust region) were implemented in Python (overall 8 algorithms)

• 165 various N -d(N ≥ 2) strong benchmark problems

• For each algorithm, all problems were launched from the random point of domain
100 times and results were averaged

Examples of benchmark problems
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Results
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Proportion of problems where have been success-
fully found global minimizer in more than half of all
launches

in more than
0.99 launches

square under plot of
performance profile
function

Strategy BFGS DFP PSB SR1 Total
LS 0.21 0.12 2.58 0.16 0.08 2.54 0.09 0.05 2.66 0.09 0.05 2.97 0.07 0.04
TR 0.18 0.12 2.93 0.16 0.1 2.91 0.19 0.14 2.93 0.11 0.06 2.83 0.1 0.05

Performance evaluation: ns - number of solvers, np - number of problems, ts,p -

time, rs,p =
ts,p

min{ts,p:s∈S} - performance profile function

ρs(τ ) = 1
np
size{p : 1 ≤ p ≤ np, log(rs,p ≤ τ )} - defines the probability for

solver s that the performance ratio rs,p is within a factor τ of the best possible
ratio
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Conclusions and Further Work

• Trust region based strategy for all methods(except BFGS) successfully solved
more problems than line search. It’s square metric also showed better results

• Though SR1 solved the least amount of problems it founded solution faster for
line search

• Further, one may add to comparison L-BFGS-B

Source code of this work is available here [3]
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