Beard! |

Nastya Merkulova
Optimization Class Project. MIPT

Introduction

"How would | look with a beard?” - this agonizing question must be familiar to
any man considering the momentous decision of growing it all off. This project
presents a method of attaching a beard based on the spotting of the feature
points on the face.

Face Recognition

e Step 1: Finding all the Faces

We are going to use a method invented in 2005 called Histogram of Oriented
Gradients (HOG). To find faces in an image, we will start by making our
image black and white. Then we will look at every single pixel in our image
one at a time. We want to draw an arrow showing in which direction the
image is getting darker. We will break up the image into small squares of
16x16 pixels each. In each square, we will count up how many gradients point
in each major direction (how many point up, point up-right, point right, etc).
Then we will replace that square in the image with the arrow directions that
were the strongest. To find faces in this HOG image, all we have to do is find
the part of our image that looks the most similar to a known HOG pattern
that was extracted from a bunch of other training faces.

e Step 2: Posing and Projecting Faces
We will try to warp each picture so that the eyes and lips are always in the
sample place in the image. To do this, we are going to use an algorithm
called face landmark estimation. The basic idea is we will come up with 68
specific points (called landmarks) that exist on every face - the top of the
chin, the outside edge of each eye, the inner edge of each eyebrow, etc. Then
we will train a machine learning algorithm to be able to find these 68 specific
points on any face. Now that we know were the eyes and mouth are, we
will simply rotate, scale and shear the image so that the eyes and mouth are
centered as best as possible. We will not do any fancy 3d warps because that
would introduce distortions into the image.

e Step 3: Encoding Faces

What we need is a way to extract a few basic measurements from each face.
Then we could measure our unknown face the same way and find the known
face with the closest measurements. For example, we might measure the size
of each ear, the spacing between the eyes, the length of the nose, etc. The
solution is to train a Deep Convolutional Neural Network. But instead of
training the network to recognize pictures objects, we are going to train it to
generate 128 measurements for each face.

e Step 4: Finding the persons name from the encoding
All we have to do is find the person in our database of known people who has
the closest measurements to our test image. You can do that by using any
basic machine learning classification algorithm. We will use a simple linear
SVM classifier, but lots of classification algorithms could work. All we need
to do is train a classifier that can take in the measurements from a new test
image and tells which known person is the closest match.

Beard attachment algorithm

In advance, the feature points on the beard were marked:

Further for the processed image there are feature points and a frame in which it

iIs necessary to place a beard. Further, the following loss functions are optimized:

def f(x):

err = 0

coef w = x[0]

coef h = x[1]

angle = x[2]

for face, beardd in zip(face fp, beard fp):
b x = beardd[0] * coef w
b y = beardd[1] * coef h

[b X new, b y new] = np.array([[np.cos(angle), np.sin(angle)],
[-np.sin(angle), np.cos(angle)]]) @ np.array([b x, b y])
err += np.linalg.norm(face - [b X new, b y new] + [x opt, y opt])
return err
def f(x):
err = 0

for face, b in zip(face fp, beard fp):
err += np.linalg.norm(face - b + Xx)
return err

1 optimizes the beard extension (width, length), 2 finds the optimal point - the
coordinates of the upper left border.

The loss function is the root of the sum of squares of distances between the
corresponding feature points of the face and beard.

Results

Conclusion

The method of face and feature points recognition was studied and imple-
mented. Then the beard attachment algorithm was proposed and implemented
based on minimizing the loss function, which is the root of the sum of squares
of distances between the points that form lines on the face and on the beard.

References

1. Adam Geitgey. Machine Learning is Fun! Part 4: Modern Face Recognition
with Deep Learning. Medium. 2017

2. Florian Schroff, Dmitry Kalenichenko, James Philbin. FaceNet: A Unified
Embedding for Face Recognition and Clustering. Google Inc. 2015

3. Code: https://colab.research.google.com/drive/1Z2q8cmSk0OpK11\
JhGitLesttTLDKheolAa


https://colab.research.google.com/drive/1Zq8cmSkOpK11 \ JhGitLesttTLDKheo1Aa
https://colab.research.google.com/drive/1Zq8cmSkOpK11 \ JhGitLesttTLDKheo1Aa

