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Nonlinear CG Intro
Conjugate Gradients approach can be formulated as follows:

1. Direction generation rule
d0 = −∇f (x0)

dk = −∇f (xk) + βkdk−1

2. Line search for an appropriate point:

(a) Exact solution (usually too expensive)

dk
T∇f (xk + αkdk) = 0

(b) Strong Wolfe conditions

f (xk + αkdk) ≤ f (xk) + c1αkdk
T∇f (xk)

|dkT∇f (xk + αkdk)| ≤ c2|dkT∇f (xk)|

(c) Weak Wolfe conditions

f (xk + αkdk) ≤ f (xk) + c1αkdk
T∇f (xk)

dk
T∇f (xk + αkdk) ≥ c2dk

T∇f (xk)

There many possibilities for βk selection and each of them is equivalent to
linear CG in case of quadratic loss function with exact line search on each
step:

1. Fletcher-Reeves [1]

βFRk =
||gk||
||gk−1||

2. Polak-Ribiere-Polyak (used in SciPy [2])

βPRPk =
gk

Tyk
||gk−1||

, yk = gk − gk−1

3. Hestenes-Stiefel

βHSk =
gk

Tyk

dk−1
Tyk

, yk = gk − gk−1

4. Dai-Yuan [3]

βDYk =
||gk||

dk−1
Tyk

, yk = gk − gk−1

5. Hager-Zhang [4]

βHZk =
1

dk−1
Tyk

(
yk − 2dk−1

||yk||
dk−1

Tyk

)T
gk

Competing BFGS and L-BFGS

The BFGS and L-BFGS methods are widely used in unconstrained opti-
mization. Moreover, they are often thought to be better than CG in average
case. It must be noted that initial point choice is crucial for the optimization
process. Polak-Ribiere-Polyak version of CG is used below.
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To compare robustness of the algorithms following method is suggested (re-
lated to the one used in [5]):

1. Generate set of points uniformly distributed in G = [xmin, xmax]×[ymin, ymax]:

P = {pi}Ni=1 ∈ unif ([xmin, xmax]× [ymin, ymax])

2. Take set A = {A1, A2, . . .} of algorithms to be compared. Try to find the
minimizer taking pi as starting point and save the value obtained by algorithm
Ak as FAk

(pi). Denote Fmin(pi) = mink FAk
(pi).

3. Take set of τ ∈ [0,+∞] and compute [S]uccess rate as

S(Ak, τ ) =
||{pi | FAk

(pi) ≤ τFmin(pi)}||
||P ||

4. Plot S(Ak, τ ) for each Ak ∈ A as function of τ .

Results

Numerical experiments [7] were performed with ||P || = 10000 points for
Beale function [6] and pi ∈ unif ([−4.5,−4.5] × [−4.5,−4.5]). The plot
shows that the CG algorithm performs at least as well as BFGS and L-BFGS
methods. Moreover, while offering lower memory consumption (as L-BFGS
does), it also has higher reliability. So we can do an informal statement: while
the family of BFGS methods collects information about the curvature during
optimization process, they explicitly assume that the function doesn’t change
too much between the steps. This also means that we can’t move too far each
iteration. In contrast, CG searches for a minimum along given direction and
can perform quite big steps, while keeping the search directions very ’unique’ in
the sense of conjugacy.
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