
Q-Learning: randomized rewards
Valentin Samokhin, Daniil Merkulov
Optimization Class Project. MIPT

Introduction
The Reinforcement Learning (RL) is a quite old branch of learning based on
interaction between the environment and the agent. The agent makes actions,
receives reward, and makes a step according to some policy. The task of the
RL is to find out the optimal policy that provides the biggest cumulative re-
ward. There are two main approaches in RL - model-based and model-free.
The latter one is considered by some specialists to be more simple in sense of
memory consumption and knowledge about the environment. The most difficult
problems that algorithms should solve is the exploitation-exploration trade-off
[1] and the credit assignment problem. Instead of introducing arbitrariness into
action choice we add Gaussian noise to the reward received by the agent. Thus
we want to study the possible effect the noise[1] can bring into the results. To
our disappointment, the majority of existing papers are not supported by any
numerical experiments. We want to set them.

Value (V-) and action-value (Q-) functions

Let us intrduce the Value function[2]:

V π(s) = E

∑
i

γiri(si, a
π
i ) | s0 = s, π

 (1)

It is the expectation of the sum of discounted rewards, received by the agents
in case it follows the policy π 1 starting from the state s.

Then we should introduce the Q-function [3]. It, given the state s and action
a, returns the expected cumulative reward in case of folowing the policy π

Qπ(s, a) = E

∑
t≥0

γtrt | s0 = s, a0 = a, π

 =

= r0(s, a) + γE
[
V π(s1

2, a)
]

(2)

It makes sence, if we suppose that interaction between agent and environment
is a Markov Decision Process. This assumption allows us not to take into the
account the previous observations.

Optimality theorem[4] states that for the optimal policy π? the following equa-
tion takes place.

V ? = maxaQ
?(s, a) (3)

If we assume that the state and action spaces, and the horizon, than we can
claim that the optimal policy always exists. This equation and the recursive def-
inition of Q-function (2) make possible the introduction of the various iterative
schemes (like (4))that update the Q-values step-by-step.

Qi+1(s, a) = E
[
r + γmaxa′Qi(s

′, a′) | s, a
]

(4)

Algorithm
The main algorithm we want to study here is a variant of Q-learning that
incorporates UCB exploration.

1: Initialize Qh(s, a)← H and Nh(s, a)← 0 ∀(s, a, h) ∈ S × A× [H ]
2: for episode k = 1, .., K do
3: Receive x1
4: for step h = 1, . . . , H do
5: Take action ah← argmaxa′Qh(xh, a

′), and observe xh+1
6: t = Nh(sh, ah)← Nh(sh, ah) + 1; bt← c

√
H3ι/t

7: Qh(sh, ah)←
(1− αt)Qh(sh, ah) + αt[rh(sh, ah) +N (0, 1) + Vh+1(sh+1) + bt].

Vh(sh)← min{H,maxa′∈AQh(sh, a
′
)}.

8: end for
9: end for

Algorithm 1: Q-learning with UCB-Hoeffding [1]

Here ι is a log-factor: ι := log(SAT/p)

We would compare this approach with ε-greedy policy without bonus: instead
of choosing the best action from the Q-table (as in step 5 of the algorithm
2), we would balance between exploitation and exploration with ε probability of
choosing exploration. We would also try to add some small noise to the reward
in the UCB-algorithm (step 7).

1: Initialize Qh(s, a)← H and Nh(s, a)← 0 ∀(s, a, h) ∈ S × A× [H ]
2: for episode k = 1, .., K do
3: Receive x1
4: for step h = 1, . . . , H do
5: Sample action ah← argmaxa′Qh(xh, a

′) with p = 1− ε or chose
any other action with p = ε, and observe xh+1

6: t = Nh(sh, ah)← Nh(sh, ah) + 1; bt← c
√
H3ι/t

7: Qh(sh, ah)← (1−αt)Qh(sh, ah)+αt[rh(sh, ah)+Vh+1(sh+1)+bt].
Vh(sh)← min{H,maxa′∈AQh(sh, a

′
)}.

8: end for
9: end for

Algorithm 2: Q-learning with ε-greedy exploration [1]

Numerical example
To get numerical results we use the environment from Open-AI gym package
”Taxi-v2” [5]. It has small finite action and observation spaces and allows user
to select the arbitrary initial state.

There are 4 locations (labeled by different letters) and your job is to
pick up the passenger at one location and drop him off in another. You
receive +20 points for a successful dropoff, and lose 1 point for every
timestep it takes. There is also a 10 point penalty for illegal pick-up and
drop-off actions.

The second environment to study the approaches is the discrete variant of
CartPole problem. This classic control problem allows to choose discrete ap-
proximation as we wish. To do it precisely, the observation space should be
quite big, what sets a more difficult task than the previous one.

Results
The results show, that UCB-exploration finds the optimal policy quicker than
the ε-greedy algorithm for Taxi problem. The addition of noise makes the curve
of the episode reward smoother for both policies.

The algorithm worked poorely on CartPole problem, due to the lack of assump-
tions required for the algorithm.

Conclusion
We showed that in some cases bonus and noise addition may help to improve
the exploration-exploitation trade-off, giving better observed episode rewards.
However, there is strong dependence on algorithm success and the ability to
choose the initial state arbitrary. In the Taxi case, fine tuning on parameters of
the algorithm improved results, reducing the length of the episode. One can try
to study the impact the random noise can have in Deep Q-Learning. The tasks,
usually solved by such approach (e.g. Atari games [6]), incorporate enough
arbitrariness in the initial state.

References

[1] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is
q-learning provably efficient? In Advances in Neural Information Processing
Systems, pages 4868–4878, 2018.

[2] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. MIT press, 2018.

[3] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards.
PhD thesis, King’s College, Cambridge, 1989.

[4] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[5] Greg Brockman et al. Openai gym. CoRR, abs/1606.01540, 2016.

[6] Volodymyr Mnih et al. Playing atari with deep reinforcement learning.
CoRR, abs/1312.5602, 2013.


