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Introduction
Neural networks became the most popular area of machine learning. While
stochastic gradient descent (SGD) with momentum works well enough in many
situations, its performance declines dramatically as networks become deeper
and more complex. The alternative is 2nd-order methods, for example natural
gradient method.

θk+1 = θk − αkF−1∇h

Unfortunately, the cost of inverting the curvature matrix is prohibitive for neural
networks, due to their high dimension. Kronecker-factored Approximate Curva-
ture (K-FAC) (James Martens and Roger Grosse 2016). is an efficient method
for approximating natural gradient descent in neural networks. K-FAC is based
on an efficiently invertible approximation of a neural networks Fisher information
matrix which is neither diagonal nor low-rank. It is derived by approximating
various large blocks of the Fisher (corresponding to entire layers) as being the
Kronecker product of two much smaller matrices. it is only several times more
expensive to compute than the SGD, but the updates produced by K-FAC make
much more progress optimizing the objective, which results in an algorithm that
can be much faster than SGD with momentum.

Fisher Matrix
Neural network transforms its input x to an output y = f (x, θ) through a
series of l layers, where θ is the vector of all network’s parameters concatenated
together

θ =
[
vec (W1)> vec (W2)> · · · vec (W`)

>
]>

. (1)

Thus our network defines a conditional model Px|y(θ), with Fisher information
matrix which can be viewed as an l by l block matrix

F = E

[
d log p(y|x, θ)

dθ

d log p(y|x, θ)>

dθ

]
= E

[
DθDθ>

]
=

E
[
vec (DW1) vec (DW1)>

]
· · · E

[
vec (DW1) vec (DW`)

>
]

... . . . ...

E
[
vec (DW`) vec (DW1)>

]
· · · E

[
vec (DW`) vec (DWl)

>
]
 . (2)

Each block Fi,j can be presented as:

Fi,j = E
[
vec (DWi) vec

(
DWj

)>]
= E

[
(ai−1 ⊗ gi)

(
aj−1 ⊗ gj

)>]
= E

[
(ai−1 ⊗ gi)

(
a>j−1 ⊗ g

>
j

)]
= E

[
ai−1a

>
j−1 ⊗ gig

>
j

]
, (3)

where ai is the input of the i layer, gi is derivative of loss w.r.t. the inputs at
layer i, A⊗B denotes the Kronecker product between A ∈ Rm×n and B:

A⊗B =

 [A]1,1B · · · [A]1,nB
... . . . ...

[A]m,1B · · · [A]m,nB

 (4)

Initial approximation F̃ to F defines by the block-wise approximation:

Fi,j = E
[
ai−1a

>
j−1 ⊗ gig

>
j

]
≈ E

[
ai−1a

>
j−1

]
⊗E

[
gig
>
j

]
= Ai−1,j−1⊗Gi,j = F̃i,j,(5)

Additional approximations to F̃ and inverse
computations

One of the methods to approximate F̃−1 is the block-diagonal approximation.
The analogue is using block-tridiagonal case. A natural choice for such an
approximation F̆ of F̃ , is to take the block-diagonal of F̆ to be that of F̃ :

F̆ = diag
(
F̃1,1, F̃2,2, . . . , F̃`,`

)
= diag

(
A0,0 ⊗G1,1, . . . , A`−1,`−1 ⊗G`,`

)
Using the identity (A ⊗ B)−1 = A−1 ⊗ B−1 we can compute the inverse of
F̆ :

F̆−1 = diag
(
A
−1
0,0 ⊗G−1

1,1 . . . , A
−1
`−1,`−1 ⊗G−1

`,`

)
(6)

In this way we need to compute the inverces of 2l smaller matrices instead of
one large matrix inversion. To compute u = F̆ v we can use identity

(A⊗B) vec(X) = vec
(
BXA>

)
to get

Ui = G−1
i,i ViA

−1
i−1,i−1, (7)

u and v are the vectors of Ui and Vi respectively concatenated together.

Regularization techniques
Methods which use the exact Fisher work better with an adaptive Tikhonov
regularization technique. It happens because K-FAC has no guarantee of being
accurate up to 2nd-order.

For the block-diagonal approximation F̆ of F̃ this means adding (λ + η)I to
each of the diagonal, blocks, which gives us new equation for each block:

Ai−1,i−1 ⊗Gi,i + (λ + η)I = Ai−1,i−1 ⊗Gi,i + (λ + η)I ⊗ I.

For inverting that equation we can use next formula:

(A⊗B±C⊗D)−1 = (K1 ⊗K2) (I ⊗ I ± S1 ⊗ S2)−1
(
K>1 ⊗K

>
2

)
,(8)

where K1 = A−1/2E1 and K2 = B−1/2E2.

Algorithm

Initialize θ1

Choose λ, η

while θk is not satisfactory do
1. Choose mini− batch size m.

2. Perform forward and backward pass to estimate the gradient ∇h(θk).

3. Update the Ai,j and Gi,j using ai, computed in forward pass.

4. If necessary recompute the approximate Fisher and compute Fisher inverse.

5. Compute the update δ.

6. θk+1 := θk + δ.

7. k := k + 1.

Computational Costs
Following the author’s most heuristics we can get next costs for number of
operations:
K-FAC with block-diagonal approx. C1`d

2m + C2`d
3

K-FAC with block-threediagonal approx. C1`d
2m + C4`d

3

SGD C1`d
2m

where l is the number of layers, d is the typical number of units in each layer,
m is the mini-batch size.

Experiment
To investigate the applicability of K-FAC for optimization neural networks we
consider classification problem using AlexNet with ”Fashion-MNIST” dataset.
The loss, accuracy and time of K-FAC was compared with SGD with momentum
and Adam.

Results
To achieve the same results of loss and accuracy as K-FAC SGD and Adam
spends several times more iterations. On the other hand, the overall time of
K-FAC work is 5 times bigger.
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Figure 1: Train loss
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Figure 2: Accuracy of model
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