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Introduction
In this project we consider gradient methods with inexact information of the
objective given by inexact model of this objective. We analyze a gradient-
type method for this type of problems and provide its convergence rate. To
illustrate the applications, we consider optimization problems in a clustering
model. Notably, our framework allows to solve non-convex problems which
have a convex inexact model, which is illustrated in the section devoted to
clustering model.

(δ, L)-model of a function

Definition 1. Let function ψδ(x, y) be convex in x ∈ Q and satisfy ψδ(x, x) =
0 for all x ∈ Q. We say that ψδ(x, y) is a (δ, L)-model of the function f in a
given point y with respect to V [y](x) iff for all x ∈ Q the inequality

0 ≤ f (x)− (f (y) + ψδ(x, y)) ≤ LV [y](x) + δ

holds for some L, δ > 0.

Such inexact model generalizes the concept of inexact oracle.

Definition 2. Consider a convex minimization problem

φ(x)→ min
x∈Q⊆Rn

If φ is smooth, we say that we solve it with δ̃-precision (δ̃ ≥ 0 ) if we find x̃ s.t.
maxx∈Q〈∇φ(x̃), x̃− x〉 = δ̃. If φ is general convex, we say that we solve this

problem with δ̃-precision if we find x̃ s.t. ∃h ∈ ∂φ(x̃), 〈h, x∗ − x̃〉 ≥ −δ̃. In

both cases we denote this x̃ as argminδx∈Q φ(x).

Algorithm
In this subsection we describe a gradient-type method for problems with (δ, L)-
model of the objective.

1: Input: x0 is the starting point, L > 0 and δ, δ̃ > 0.
2: for k ≥ 0 do
3:

φk+1(x) := ψδ(x, xk) + LV [xk](x), xk+1 := arg min
x∈Q

δ̃φk+1(x). (1)

4: end for
Output: x̄N = 1

N

∑N−1
k=0 xk+1

Convergence Rate

Theorem. Let V [x0](x∗) ≤ R2, where x0 is the starting point, and x∗ is
the nearest minimum point to the point x0 in the sense of Bregman diver-
gence V [y](x). Then, for the sequence, generated by Algorithm the following
inequality holds:

f (x̄N )− f (x∗) ≤
LR2

N
+ δ̃ + δ

Clustering Problem and Electoral Model
Consider so-called C-means soft clustering problem:

min
C∈Rm×K

Varπ(C) =

N∑
i=1

K∑
k=1

π
(k)
i (C) ‖vi − ck‖22


, where C corresponds to the positions of the centers of the clusters and π
are the probabilities of a cluster membership. Yu. Nesterov proposed the first
soft-clustering model with the theoretically proved efficiency.

Let us describe an electoral model presented by Yu. Nesterov. In the model,
we have N independent voters and K political parties and the main assumption
is that the voting results are random. Voter i decides to vote for party k with
probability pki . We assume that an opinion of voter i can be described by a
vector vi ∈ V . At the same time, positions xk ∈ V are flexible. After each
round of elections, these values can be adjusted for better representing the
positions of the voters closely attached to this party.

Finally, let us fix some distance function ρ(x, y) which is used for measuring
the distance between the opinion of a voter and current position of a political
party. In the electoral model, for probability distribution we apply the discrete
choice probabilities of Logit model

p
(k)
i (X) = e−ρ(vi,xk)/µ/

 K∑
j=1

e−ρ(vi,xj)/µ

 , k = 1, . . . , K

where µ ≥ 0 is the flexibility parameter, which represents the volatility of
opinions of voters.

In his paper, Yu. Nesterov shows that the process of clustering in the electoral
model can be represented in a form of an optimization problem:

min
xk∈V

ψ̂k (P, xk) =
1

N

N∑
i=1

p
(k)
i ρ (vi, xk) +

1

τ̃
d (ck, xk)



Solution of the Clustering Problem
So far, the problem can be rewritten as

fµ1,µ2(x = (z, p)) = g(x) + µ1

n∑
k=1

zk ln zk +
µ2

2
‖p‖22→ min

z∈Sn(1),p∈m+
, (2)

where m
+ is a non-negative orthant and Sn(1) is the standard n-dimensional

simplex in n. In addition, we assume that g(x) (generally, non-convex) is a
function with Lg-Lipschitz continuous gradient:

‖∇g(x)−∇g(y)‖∗ ≤ Lg‖x− y‖ ∀x, y ∈ Sn(1)×m+ ,

It can be shown that

ψδ(x, y) = 〈∇g(y), x− y〉 − Lg ·KL(zx|zy)−
Lg
2
‖px − py‖22

+µ1(KL(zx|1)−KL(zy|1)) +
µ2

2

(
‖px‖22 − ‖py‖

2
2

) (3)

is a (0, 2Lg)-model of fµ1,µ2(x) in x with respect to the following Bregman
divergence

V [y](x) = KL(zx|zy) +
1

2
‖px − py‖22.

. Thus, the describe gradient method can be implemented to this problem.

Conclusion
We applied new method to, generally speaking, non-convex optimization prob-
lem which arises in clustering model. Derived convergence rate estimation is
among the first theoretically proved estimations for this problem.


