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Introduction
In this paper, the idea of approximation of Gaussian stationary processes and
differentiable functions will be described. In particular, a theory of approxima-
tion of Gaussian processes based on the minimax covariance function will be
derived. The quality of the approximators based on various covariance functions
will be compared, and it will be shown that the processes based on the minimax
covariance function show the best results.

General theory

Let f (x) be a stationary Gaussian process on Rd with a covariance function

c(x) = E(f (x0 + x)− Ef (x0 + x))(f (x0)− Ef (x0)).

Then the spectral density F (ω) is defined as

F (ω) =

∫
Rd
e2πiωTxc(x)dx

Suppose we know the values of the implementation of f ( cdot) on an infinite
rectangular grid

DH = {xk : xk = H · k, k ∈ Zd}

where H is a diagonal matrix.
Interpolation error for area ΩH = [0, h1]× · · · × [0, hd] is defined as:

σ2
H(f̃ , F ) =

1

µ(ΩH)

∫
Rd

E[f̃ (x)− f (x)]2dx

where µ(ΩH) = Md
i=1hi – Lebesgue measure ΩH , f̃ (x) – interpolation f (x).

We will consider f̃ (x) kind of

f̃ (x) = µ(ΩH)
∑
x′∈DH

K(x− x′)f (xk)

where K(·) – symmetric kernel.

Interpolation process
Consider the one-dimensional case when

K̂(ω) =

{
1− |w| · h, if |w| ≤ 1

h

0, else

The recovered f̃ (x) process that minimizes the interpolation error is

f̃ (x) = h ·
∑

xk∈DH

K(x− xk)f (xk)

Finding the Fourier transform of the kernel K̂(ω), we get the interpolation
process f̃ (x):

f̃ (x) = h2 ·
∑

xk∈DH

sin2(
(x−xk)π

h )

((x− xk)π)2
f (xk)

xk = h · k, k = 0,±1,±2, . . .

Minimax error
Define the set F(L, λ) of spectral densities F (ω) for a given λ ∈ Rd and L > 0:

F(L, λ) = {F : E
d∑
i=1

λ2
i (
∂fF (x)

∂xi
)2 ≤ L, x ∈ Rd}

where f (x) = fF (x) is a Gaussian process with spectral density F ( omega),
observed at the point x ∈ Rd.

Determine the minimax interpolation error:

RH(L, λ) = inf
f̃

sup
F∈F(L,λ)

σ2
H(f̃ , F )

Process generation
The experiments examined the implementation of Gaussian processes generated
by the following covariance functions. The same covariance functions are used
to build regression models.

• Matern1/2 : c(r) = σ2 exp(−rρ ),

• Matern3/2 : c(r) = σ2(1 +
√

3r
ρ ) exp(−

√
3r
ρ ),

• Matern5/2 : c(r) = σ2(1 +
√

5r
ρ + 5r2

3ρ2
) exp(−

√
5r
ρ ).
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Computational experiments
Our task is to compare the error for the minimax covariance function and for
other covariance functions commonly used to create regression models based
on Gaussian processes.

Results
The figures show that with increasing smoothness of tasks, the quality of the
minimax interpolation decreases as compared to other regression models. For
the Matern12 covariance function, our model shows adequate results compared
to other models, which was expected according to the theory. For a quadratic
exponential function, on the contrary, the smoothness of the minimax covariance
function too low results in a poor quality of the models obtained.
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Conclusion

1. An interpolation Gaussian process type was obtained.

2. Our interpolation model performed better than other models on nonsmooth
problems.

3. Also, our model has shown itself to be more resistant to noise.
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