
Neural methods for solving calculus of variation problems
Yury Prokhorov
Optimization Class Project. MIPT

Introduction
A calculus of variations problem is minimizing an integral functional over
a given set of functions. Such problems naturally arise in many practical
engineering cases. A general way of tackling them involves solving an
Euler-Lagrange equation which is a second order differential equation. In
many cases the complexity of this equation does not allow for a solution
by quadratures, thus, numerical methods are necessary.

Generally, numerical methods are categorized as direct and indirect meth-
ods. Direct methods convert a problem into a finite dimensional one, while
indirect methods attempt to find a solution of an Euler-Lagrange equation.
In present work a direct method using neural networks is proposed.

Problem statement
An optimization problem is stated as follows

J [x(t)] =

tf∫
t0

L
(
t, x(t), ẋ(t)

)
dt −→ min

x(t)

where x(t) is a differentiable function on interval [t0, tf].

Often boundary conditions are added:

x(t0) = x0, x(tf) = xf

There also are other variations in which one or both boundary conditions
are missing, or there is an extra integral condition (isoperimetric problem).

Discretization
There are two continuous features that are evaluated numerically:

1. Derivative ẋ(t).

It can be estimated using finite differences. In present work the central

differences method is used: ẋ(t) ≈ x(t+h)−x(t−h)
2h .

2. Integral J [x].

The integral can be evaluated using numerical methods with an N
points split. In present work trapezoid rule and Simpson’s rule are
applied.

The problem is reduced to minimizing Ĵ(x), where Ĵ is a numerical ap-
proximation of the integral and x is a finite dimensional vector whose
components are used to compute Ĵ and ẋ.

The dimensionality of such problem is O(N). However, knowing that
components of x should form a smooth function, we can reduce the prob-
lem to O(1) by approximating a function in a given class. In present work,
neural networks are used to achieve such result.

Neural network architecture
The neural network approximates an optimal solution, therefore, it has a single input
and a single output. The simplest case can be visualized as a following diagram

The idea is to use different activation functions ak(t). Some examples:

ak(t) = cos
πk(t− t0)
tf − t0

, ak(t) = (t− t0)k

Such network will act as basis expansion (trigonometric series or power series) of the
solution. More advanced networks have more hidden layers to allow for more variability.

An extra activation layer ϕ does a smooth transform to conform to boundary con-
ditions. In present work the following transform is utilized:

ϕ(t, x) = x0 +
xf − x0
tf − t0

(t− t0) + (t− t0)(t− tf)x

Training

The network is trained to minimize the integral loss Ĵ using gradient methods:

• Vanilla GD with momentum

• L-BFGS

• Adam

The PyTorch framework with its Autograd tool was used for training.

Hyperparameters
The following parameters of the model can be altered to find better results:

• Integral approximation (e.g. Simpson’s rule, etc.) and its precision

• Derivative approximations with finite differences and their precision

• Different numbers of layers and neurons, different activation functions

• Boundary condition transform

• Optimization algorithm and its parameters

Numerical example
Consider a particular problem:

J [x] =

π∫
0

[
(ẋ + x)2 + 2x sin(t)

]
dt −→ min, x(0) = 0, x(π) = 1

Its discrete version can be solved using the gradient descent algorithm. For
comparison, a neural network was used too. It contained one hidden cosine layer
with 8 neurons and its training also involved the gradient descent algorithm with
momentum.

All other hyperparameters were chosen to be the same in both methods (integral
approximation, learning rate scheduling, etc.)

Results
The quality metric chosen here is relative L1-error between numerical and exact
solutions:

RelError(x, x∗) =
1
N

∑
k|x(tk)− x∗(tk)|
1
N

∑
k|x∗(tk)|

In this numerical example the neural algorithm converges to a much better result
than a naive approach in terms of precision.

0 1000 2000 3000 4000 5000
iteration

10 3

10 2

10 1

100

er
ro

r

relative error in log scale
NN GD
NN GD with momentum
NN Adam
NN L-BFGS
GD

Conclusion
As a result of present work, a flexible neural algorithm for solution of different
calculus of variations problems has been developed. Testing has shown that it
is able to achieve better precision than some naive approaches and is on par
with other optimization methods for variational problems.

Link to GitHub repository.

https://github.com/suchusername/VariationalCalculus

