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Introduction
In this paper, we solve the problem of predicting the target variable with the
presence of dependencies (linear and nonlinear). The problem is that the source
data has a high dimension and there are hidden dependencies in the spaces of
the target and independent variables. Excessive dimensionality of spaces and
multiple correlations lead to instability of the model. To solve this problem, we
propose to build a model that takes into account both of these dependencies.
The model translates data into low-dimensional spaces and data alignment oc-
curs in the resulting hidden space. Alignment means capturing the relationship
between the target variable and the independent variable through feature align-
ment. This strategy aims to use the additional knowledge contained in different
spaces to get a more informative representation of the data.

Two experiments are being conducted. The first experiment on the example of
comparing linear CCA and its nonlinear modification Deep CCA aims to show
that sometimes it is not enough to take into account only linear dependencies
in the source data spaces. The second experiment aims to test the hypothesis
about the importance of data alignment. Several models with data conversion
are compared. PLS is used as the basic algorithm.

Problem statement
Let the selection be given (X,Y), X = [x1, . . . ,xn] ∈ Rn×m — matrix of
independent variables, Y = [y1, . . . ,yn] ∈ Rn×k — matrix of target variables.

It is assumed that there is a dependency between X and Y:

Y = f (X) + ε,

where f — the function of regression, ε — the matrix of regression errors.

The error function is a quadratic loss function:

L(f |X,Y) = ‖X− f (Y)‖22→ min
f
.

General scheme of a model with alignment
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ϕ1, ψ1 – encoding functions

ϕ2, ψ2 – decoding functions
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Dependency between T and U after switching to the latent space:

U = h(T) + η,

where h — regression dependency function, η — regression error matrix.

Optimal h Selected by minimizing the error function. Use the quadratic loss
error function L on T and U :

L(h|T,U) =

∥∥∥∥ U
n×p
− h( T

m×p
)

∥∥∥∥2
2
→ min
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The final model looks like:

f = ψ2 ◦ h ◦ ϕ1.

CCA, PLS

• CCA finds two sets of basis vectors {wxi}
p
i=1, wx ∈ Rmand{wyi}

p
i=1, wy ∈

Rk, one for X and another for Y, as follows

(wx,wx) = argmax
wx,wx

g(Xwx,Ywy) = argmax
wx,wx

corr(Xwx,Ywy)

• PLS also finds the basis vectors by maximizing the covariance:

(wx,wx) = argmax
wx,wx

cov(Xwx,Ywy)

So the encoding functions for CCA and PLS

ϕ1(X) = XWx, ψ1(Y) = YWy

As you can see both of these algorithms are linear.

• Deep CCA — nonlinear modification of CCA based on neural networks

Experiment 1
In order to demonstrate that ignoring non-linear dependencies can lead to un-
satisfactory results, we compare CCA and Deep CCA for the task of classifying
noisy images from the MNIST dataset.

By applying Deep CCA and CCA to two images datasets, we get a new low-
dimensional feature space that ignores noise in the source data. The resulting
encoding functions ϕ1. On the new data view (on the first set of images after
applying the function ϕ1), we use linear SVM for classification (1).

illustration of Deep CCA
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Experiment 2
The MNIST dataset is used, where each image is divided into two parts. The
task of restoring the right part of the image by left (2).
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EncNet1 and LinNet1 train on trans-
formed auto-encoder with joint data
loss function.

EncNet2 and LinNet2 use separate au-
toencoders.

DumbNet is trained on source data and
has the same structure as Enc Net with
an autoencoder.

Results

Table 1: Getting a new feature space of dimension 15 using DCCA and CCA.
An indicator of effectiveness will be the accuracy of the classification of linear
SVM (ACC).

DeepCCA(L=3) CCA PCA
Validation data 92.74% 76.21% 72.84%
Test data 92.14% 76.07% 72.84%

Table 2: Restore the right side of the image by left using different models.
To measure the quality of the models, the standard deviation from the original
image is considered.

EncNet1 LinNet1 EncNet2
Number of weight coefficients 283k 239k 283k
MSE loss 0.151± 0.009 0.23± 0.01 0.151± 0.009

LinNet2 DumbNet PLS
Number of weight coefficients 239k 283k 154k
MSE loss 0.23± 0.01 0.146± 0.006 0.188± 0.001

Source code

Conclusion
The paper considers the task of decoding objects of complex structure.

A predictive model was Proposed with the alignment of the independent and
target variables in a low-dimensional hidden space.

omputational experiments were conducted.
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