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Introduction
Let us observe the problem of unconstrained convex optimization for functions
with Lipschitz-continuous third derivative. Applying methods, which use deriva-
tives up to order 3, one has the best possible convergence rate in function value
O(k−5) [1]. A significant difficulty for third-order methods is computation of
the third derivative. In [2] Nesterov has shown that in tensor methods one can
approximate third-order information by gradients and preserve the high conver-
gence rate O(k−4). Near-optimal third-order algorithm with convergence rate
Õ(k−5) is proposed in [3]. Both results are combined in [4] to get an algorithm
of order 2 and convergence rate which, up to a logarithmic factor, coincide the
optimal rate of third-order methods. The purpose of the project is to imple-
ment this so called Hyperfast Second-Order Method and compare it with the
fast gradient method.

Auxiliary Problem
Consider the augmented Taylor polynomial of convex function f : Rn → R
whose p-th derivative is Lipschitz:

Ωx,p,Hp
(y) = f (x) +

p∑
i=1

1

i!
Dif (x)[y − x]i +

Hp
p!
‖y − x‖p+1→ min

y∈Rn

It could be shown that this problem is convex if Hp ≥ Lp.

Accelerated Taylor Descent
Proposed in [3] algorithm:
ATD

1: Initialize A0 = 0, x0 = y0 = 0
2: for k = 0, 1, ... do
3: Compute λk+1 > 0 and yk+1 such that

1

2
≤ λk+1

Lp‖yk+1 − x̃k‖
(p− 1)!

≤ p

p + 1
4: where

yk+1 = argmin
y

Ωx̃k,p,Lp(y)

5: and

ak+1 =
λk+1 +

√
λ2
k+1 + 4λk+1Ak

2
, Ak+1 = Ak + ak+1,

x̃k =
Ak
Ak+1

yk +
ak+1

Ak+1
xk

6: Update xk+1 = xk − ak+1∇f (yk)
7: end for
8: return yk

ensures

f (yk)− f (x∗) ≤
C(p)Lp‖x∗‖p+1

k(3p+1)/2

Particularly, the convergence rate is Õ(k−5) for p = 3.

Inexact auxiliary problem solution
Let us call for γ ∈ [0; 1) any point from the set

N
γ
p,Hp

(x) = {T : ‖∇Ωx,p,Hp
(T )‖∗ ≤ γ‖∇f (T )‖∗}

an inexact solution of the auxiliary problem. Note that if γ = 0, N0
p,Hp

(x) is

the exact solution. According to [4], taken p = 3, γ = 1
6, H3 = 3

2L3 one could
satisfy the requirements of ATD and at each iteration find a point from the

set N
1/6
3,3L3/2

(x̃k) instead of solving the auxiliary problem.

Approximate Gradients
As shown in [2], one could compute approximate value of ∇Ω(y) using

gτx(y) =
1

τ2
(∇f (x + τ (y − x)) +∇f (x− τ (y − x))− 2∇f (x))

and get accuracy

‖gτx(y)−D3f (x)[y − x]2‖∗ ≤
τ

3
L3‖y − x‖3

Consequently, if the total error of approximate ∇Ω(y) is δ, y ∈ N1/6
3,3L3/2

(x) if

‖g(y)‖∗ ≤
1

6
‖∇f (y)‖∗ − δ

where

g(y) = ∇f (x) + D2f (x)[y − x] +
1

2
gτx(y) + L3‖y − x‖2(y − x)

Bregman-Distance Gradient Method

According to [2], [4] one could find a point from N
1/6
3,3L3/2

(x) with the following

algorithm:
BDGM

1: Set τ = 3δ
8(2+
√

2)‖∇f (x)‖∗
, y0 = x

2: Set

ρ(y) =
1

2
D2f (x)[y − x]2 + L3

‖y − x‖4

4
3: Set

βρ(x, y) = ρ(y)− ρ(x)− 〈∇ρ(x), y − x〉
4: for k = 0, 1, ... do
5: Compute g(yk)
6: if

‖g(yk)‖∗ ≤
1

6
‖∇f (x)‖∗ − δ

then
7: Stop
8: else

9: yk+1 = argmin
y

(
〈g(yk), y − yk〉 + 2

(
1 +

1√
2

)
βρ(yk, y)

)
10: end if
11: end for
12: return yk

Hyperfast Second-Order Method
Now it is clear that simple combination of ATD and BDGM which is to change
ATD, STEP 3: L3→ 3

2L3

ATD, STEP 4: yk+1 ∈ N
1/6
3,3L3/2

(x̃k) computed by BDGM

gives Hyperfast method, which has order 2 and convergence rate Õ(k−5)

Experiments and Results

Solve: f (x) =
∑n
i=1 log(1 + exp aTi x)→ minx∈Rn

with accuracy: |f (x)− f (x∗)| ≤ ε = 10−4

by Hyperfast and Nesterov Accelerated Gradient NAG [5] and compute the
number of calls to gradient f for both methods. Code.
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Conclusion
In sense of oracle complexity, the Hyperfast Second-Order Method turned out to
be more efficient than accelerated gradient descent, whose convergence rate is
O(k−2). This result is consistent with the theory. However, Hyperfast requires
more time as it does a lot more intermediate computations. In particular, about
90% of time is spent on solving the auxiliary problem in BDGM by NAG. It
offers hope for Hyperfast to replace fast gradient methods in some cases, if
one finds more effective way of solving that problem.
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