Hyperfast Second-Order Method Nikita Dudorov

Optimization Class Project. MIPT

Introduction

Let us observe the problem of unconstrained convex optimization for functions with Lipschitz-continuous third derivative. Applying methods, which use derivatives up to order 3, one has the best possible convergence rate in function value $O(k^{-5})$ [1]. A significant difficulty for third-order methods is computation of the third derivative. In [2] Nesterov has shown that in tensor methods one can approximate third-order information by gradients and preserve the high convergence rate $O(k^{-4})$. Near-optimal third-order algorithm with convergence rate $\tilde{O}(k^{-5})$ is proposed in [3]. Both results are combined in [4] to get an algorithm of order 2 and convergence rate which, up to a logarithmic factor, coincide the optimal rate of third-order methods. The purpose of the project is to implement this so called Hyperfast Second-Order Method and compare it with the fast gradient method.

Auxiliary Problem

Consider the augmented Taylor polynomial of convex function $f: R^n \to R$ whose p-th derivative is Lipschitz:

$$\Omega_{x,p,H_p}(y) = f(x) + \sum_{i=1}^{p} \frac{1}{i!} D^i f(x) [y-x]^i + \frac{H_p}{p!} ||y-x||^{p+1} \to \min_{y \in \mathbb{R}^n} (y) = \frac{1}{i!} D^i f(x) [y-x]^i + \frac{H_p}{p!} ||y-x||^{p+1} \to \min_{y \in \mathbb{R}^n} (y) = \frac{1}{i!} D^i f(x) [y-x]^i + \frac{H_p}{p!} ||y-x||^{p+1} \to \min_{y \in \mathbb{R}^n} (y) = \frac{1}{i!} D^i f(x) [y-x]^i + \frac{H_p}{p!} ||y-x||^{p+1} \to \min_{y \in \mathbb{R}^n} (y) = \frac{1}{i!} D^i f(x) [y-x]^i + \frac{H_p}{p!} ||y-x||^{p+1} \to \min_{y \in \mathbb{R}^n} (y) = \frac{1}{i!} D^i f(x) [y-x]^i + \frac{H_p}{p!} ||y-x||^{p+1} \to \min_{y \in \mathbb{R}^n} (y) = \frac{1}{i!} D^i f(x) [y]^i + \frac{H_p}{p!} ||y-x||^{p+1} \to \min_{y \in \mathbb{R}^n} (y) = \frac{1}{i!} D^i f(x) [y]^i + \frac{H_p}{p!} ||y-x||^{p+1} \to \min_{y \in \mathbb{R}^n} (y) = \frac{1}{i!} D^i f(x) [y]^i + \frac{H_p}{p!} ||y-x||^{p+1} \to \max_{y \in \mathbb{R}^n} (y) = \frac{1}{i!} D^i f(x) [y]^i + \frac{H_p}{p!} ||y|^{p+1} = \frac{1}{i!} D^i f(x) [y]^i + \frac{H_p}{p!} ||y|^{p+1} \to \max_{y \in \mathbb{R}^n} (y) = \frac{1}{i!} D^i f(x) [y]^i + \frac{H_p}{p!} ||y|^{p+1} \to \max_{y \in \mathbb{R}^n} (y) = \frac{1}{i!} D^i f(x) [y]^i + \frac{H_p}{p!} ||y|^{p+1} = \frac{1}{i!} D^i f(x) [y]^i + \frac{H_p}{p!} |$$

It could be shown that this problem is convex if $H_p \ge L_p$.

Accelerated Taylor Descent

Proposed in [3] algorithm:
ATD
1: Initialize
$$A_0 = 0, x_0 = y_0 = 0$$

2: **for** $k = 0, 1, ...$ **do**
3: Compute $\lambda_{k+1} > 0$ and y_{k+1} such that
 $\frac{1}{2} \le \lambda_{k+1} \frac{L_p || y_{k+1} - \tilde{x}_k ||}{(p-1)!} \le \frac{p}{p+1}$
4: where
 $y_{k+1} = \operatorname{argmin}_{y} \Omega_{\tilde{x}_k, p, L_p}(y)$
5: and
 $a_{k+1} = \frac{\lambda_{k+1} + \sqrt{\lambda_{k+1}^2 + 4\lambda_{k+1}A_k}}{2}, A_{k+1} = A_k + a_{k+1}, x_k$
 $\tilde{x}_k = \frac{A_k}{A_{k+1}} y_k + \frac{a_{k+1}}{A_{k+1}} x_k$
6: Update $x_{k+1} = x_k - a_{k+1} \nabla f(y_k)$
7: end for
8: return y_k
ensures

$$f(y_k) - f(x_*) \le \frac{C(p)L_p \|x_*\|^{p+1}}{k^{(3p+1)/2}}$$

Particularly, the convergence rate is $\tilde{O}(k^{-5})$ for p = 3.

Inexact auxiliary problem solution

Let us call for $\gamma \in [0;1)$ any point from the set

$$N_{p,H_p}^{\gamma}(x) = \{T : \|\nabla \Omega_{x,p,H_p}(T)\|_* \le \gamma \|\nabla f(T)\|_*\}$$

an inexact solution of the auxiliary problem. Note that if $\gamma = 0$, $N_{p,H_p}^0(x)$ is the exact solution. According to [4], taken p = 3, $\gamma = \frac{1}{6}$, $H_3 = \frac{3}{2}L_3$ one could satisfy the requirements of **ATD** and at each iteration find a point from the set $N_{3.3L_3/2}^{1/6}(\tilde{x_k})$ instead of solving the auxiliary problem.

Approximate Gradients

As shown in [2], one could compute approximate value of $abla \Omega(y)$ using

$$g_x^{\tau}(y) = \frac{1}{\tau^2} \left(\nabla f(x + \tau(y - x)) + \nabla f(x - \tau(y - x)) - 2\nabla f(x) \right)$$

and get accuracy

$$\|g_x^{\tau}(y) - D^3 f(x)[y - x]^2\|_* \le \frac{\tau}{3} L_3 \|y - x\|^2$$

Consequently, if the total error of approximate $\nabla \Omega(y)$ is δ , $y \in N_{3,3L_2/2}^{1/6}(x)$ if

$$\|g(y)\|_* \le \frac{1}{6} \|\nabla f(y)\|_* - \delta$$

where

$$g(y) = \nabla f(x) + D^2 f(x)[y - x] + \frac{1}{2}g_x^{\tau}(y) + L_3 ||y - x||^2 (y - x)$$

Bregman-Distance Gradient Method

According to [2], [4] one could find a point from $N_{3,3L_3/2}^{1/6}(x)$ with the following algorithm:

BDGM

1: Set
$$\tau = \frac{3\delta}{8(2+\sqrt{2})\|\nabla f(x)\|_{*}}, \ y_{0} = x$$

2: Set
 $\rho(y) = \frac{1}{2}D^{2}f(x)[y-x]^{2} + L_{3}\frac{\|y-x\|^{4}}{4}$
3: Set
 $\beta_{\rho}(x,y) = \rho(y) - \rho(x) - \langle \nabla \rho(x), y - x \rangle$
4: for $k = 0, 1, ...$ do
5: Compute $g(y_{k})$
6: if
 $\|g(y_{k})\|_{*} \leq \frac{1}{6}\|\nabla f(x)\|_{*} - \delta$
then
7: Stop
8: else
9: $y_{k+1} = \operatorname*{argmin}_{y}\left(\langle g(y_{k}), y - y_{k} \rangle + 2\left(1 + \frac{1}{\sqrt{2}}\right)\beta_{\rho}(y_{k}, y)\right)$
10: end if
11: end for
12: return y_{k}

Hyperfast Second-Order Method

Now it is clear that simple combination of **ATD** and **BDGM** which is to change **ATD**, **STEP 3**: $L_3 \rightarrow \frac{3}{2}L_3$ **ATD**, **STEP 4**: $y_{k+1} \in N_{3,3L_3/2}^{1/6}(\tilde{x_k})$ computed by **BDGM** gives **Hyperfast** method, which has order 2 and convergence rate $\tilde{O}(k^{-5})$

Experiments and Results

Solve: $f(x) = \sum_{i=1}^{n} \log(1 + \exp a_i^T x) \rightarrow \min_{x \in \mathbb{R}^n}$ with accuracy: $|f(x) - f(x_*)| \le \varepsilon = 10^{-4}$

by **Hyperfast** and Nesterov Accelerated Gradient **NAG** [5] and compute the number of calls to gradient f for both methods. Code.

Conclusion

In sense of oracle complexity, the Hyperfast Second-Order Method turned out to be more efficient than accelerated gradient descent, whose convergence rate is $O(k^{-2})$. This result is consistent with the theory. However, **Hyperfast** requires more time as it does a lot more intermediate computations. In particular, about 90% of time is spent on solving the auxiliary problem in **BDGM** by **NAG**. It offers hope for **Hyperfast** to replace fast gradient methods in some cases, if one finds more effective way of solving that problem.

References

- [1] Yurii Nesterov. Implementable tensor methods in unconstrained convex optimization. *Mathematical Programming*, 2019.
- [2] Yurii Nesterov. Superfast second-order methods for unconstrained convex optimization. to appear, 2020.
- [3] Sbastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. Near-optimal method for highly smooth convex optimization, 2018.
- [4] Dmitry Kamzolov and Alexander Gasnikov. Near-optimal hyperfast secondorder method for convex optimization and its sliding. to appear, 2020.
- [5] Stephen Boyd Weijie Su and Emmanuel J. Cand'es. A differential equation for modeling nesterovs accelerated gradient method: Theory and insights. *Journal of Machine Learning Research*, 2016.