
Optimal PUBG
Maxim Pasko
Optimization Class Project. MIPT

Introduction
If you have ever played PUBG, you know that the key point of this game is to
staying alive as long as you can. Also, it is very important to have a good loot
(rifles, ammunition, heavy armor etc.). But there is a question: where should I
jump off the plane to maximize my lifetime and to get good loot? So, in this
work I’m trying to answer this question.

Loot map
I use data from the [1]. For each small square calculated efficiency score:

min spawns = 10, penalty = min
(
1,

loot spawns count
min spawns

)
weighted loot spawns = penalty · loot spawns count

score =
weighted loot spawns

time to loot

As a result, we get this

Kills statistics
In work [2] we can see that most kills occur with distance between killer and
victim less that 50 meters (which is equivalent half of small square), so we can
calculate the probability of death for each small square separately.
In order to do it, I use dataset from [3]

Using this, also using the previous paragraph, we get a map with possible ”good”
points for the jump, not taking into account the trajectory

Function
Flight paths of an airplane are much more likely to touch the small squares in
the center of the map than at the edges. Then it will not be fair to consider
probability as just the number of deaths in a given square. Suppose that the
beginning of the trajectory is chosen on one of the four sides of the square,
and the end is a normal random variable whose mathematical expectation is a
point diametrically opposite to the beginning. This leads to the fact that in the
rounds trajectories are more often obtained, covering more locations. In this
case, in order to nevilate the frequency of the trajectories, the probability of
death in each square will be considered as ln(deaths count).

Also, assume that players’ distibution regarding the trajectory is a normal ran-
dom value. It means that players is more likely to select a point closer to the
trajectory.

So, let’s mininmize this function:

f (x, y) =
ln(1 + deaths count) · F (dist(x, y))

efficiency score of (x, y)
,

where F is a distribution function of normal random value, dist(x, y) - distance
between trajectory and (x, y).

Algorithm
To minimize this function, I used three different algoritms. Let’s give a brief
explanation of each of them (full explanation can be seen at [4], [5]):

1. Differential evolution: Generation of vectors is initialized. On the next iter-
ation for every vector vold in the last generation mutant vector is created
using formula:

vmut = v1 +mrate · (v2 − v3),

where v1, v2, v3 - random vectors from previous generation. Then vmut and
vold crossover, that gives new vector vnew, and if f (vnew) < f (vold), then
vold is replaced by vnew

2. Brute: A discrete grid is created, for each sect cell, the algorithm considers
the value of the function in it.

3. Dual annealing: This algorithm is based on simulated annealing algorithm. It
uses a distorted Cauchy-Lorentz visiting distribution, with its shape controlled
by the parameter qv:

gqv(4x(t)) ∝
[
Tqv(t)

]− D
3−qv[

1 + (qv − 1)
(4x(t))2

[Tqv(t)]
2

3−qv

] 1
qv−1+

D−1
2

,

which is used to generate a trial jump distance 4x(t) of variable x(t). The
jump is accepted if it decreases function. Otherwise, it can be accepted with

the probability [1− (1− qv)β 4 f ]
1

1−qv . The temperature decrease according

to Tqv(t) = Tqv(1)
2qv−1−1

(1+t)qv−1−1

Results
In order to check the quality of the program’s work, I used another dataset in
which I examined the early deaths of the players and calculated how many of
them went to ”bad” squares (that is, those that our program definitely would
not have chosen). It turned out that 83% of all these deaths occurred at such
points.
Code available at [6]. You can also use my telegram bot.

References

[1] Pubg interactive map. https://pubgg.com/maps/erangel.

[2] Pubg kill analysis. https://www.kaggle.com/etsc9287/

pubg-kills-analysis, 2020.

[3] Pubg kills dataset. https://www.kaggle.com/skihikingkevin/

pubg-match-deaths.

[4] Differential evolution - a simple and efficient heuristic for global optimization
over continuous spaces. https://link.springer.com/article/10.

1023/A:1008202821328.

[5] Brian Suomela Yang Xiang, Sylvain Gubian and Julia Hoeng. General-
ized simulated annealing for global optimization: The gensa package.
https://journal.r-project.org/archive/2013/RJ-2013-002/

RJ-2013-002.pdf, 2013.

[6] Code. https://colab.research.google.com/drive/

1gGeC5JpHFazB_QUmfVahIYH9htjTifcY.

https://t.me/pubgassist_bot
https://pubgg.com/maps/erangel
https://www.kaggle.com/etsc9287/pubg-kills-analysis
https://www.kaggle.com/etsc9287/pubg-kills-analysis
https://www.kaggle.com/skihikingkevin/pubg-match-deaths
https://www.kaggle.com/skihikingkevin/pubg-match-deaths
https://link.springer.com/article/10.1023/A:1008202821328
https://link.springer.com/article/10.1023/A:1008202821328
https://journal.r-project.org/archive/2013/RJ-2013-002/RJ-2013-002.pdf
https://journal.r-project.org/archive/2013/RJ-2013-002/RJ-2013-002.pdf
https://colab.research.google.com/drive/1gGeC5JpHFazB_QUmfVahIYH9htjTifcY
https://colab.research.google.com/drive/1gGeC5JpHFazB_QUmfVahIYH9htjTifcY

