
BreakoutYOLO
Vladimir Philipenko
Optimization Class Project. MIPT

Introduction
One of the state-of-the-art models in object detection is YOLO. In 2018 YOLOv3
[1] was proposed showing better mAP score and lower inference time in com-
parison with other approaches. Taking into account that even this model is still
slow on CPU I took its simplified versions — tiny-YOLOv3 and XNOR tiny-
YOLOv3. I trained them on custom data to detect 4 gestures which are used
to control classic browser Breakout game via webcam. Whole structure of this
work can be described by following diagram:

Figure 1: Project map

Model architecture

Figure 2: Vanilla tiny-YOLOv3 architecture

The tiny-YOLOv3 model is a smaller version of the YOLOv3 model. tiny-
YOLOv3 uses 7 convolutional layers which are composition of Convolution2D
BatchNormalization and LeakyRelu, and then features are extracted by using a
small number of 1x1 and 3x3 convolutional layers. tiny-YOLOv3 uses the pool-
ing layer instead of YOLOv3’s convolutional layer with a stride of 2 to achieve
dimensionality reduction. XNOR tiny-YOLOv3 model uses primary binary op-
erations to perform convolutions which accelerates detection.

Data
4 gestures were selected for detection. For better performance custom dataset
was created [2]. It contains 7725 images(approximately 2000 images for each
class) with bounding box annotations in text files. Images were obtained by
framing videos captured by webcams on different laptops. Bounding box anno-
tations in Darknet format were created with help of Yolo mark GUI [3]. Due to
not great amount of data I chose 9:1 train-test ratio.

Figure 3: finger up Figure 4: pistol Figure 5: circle Figure 6: fist

Training and model transfer
In order to improve detection performance anchors were recalculated using
k-means clustering. Models were trained in Darknet [4] with initial weights
pre-trained on COCO dataset and ADAM optimizer with momentum=0.9, de-
cay=0.0005, β1=0.9, β2=0.999 ε=0.000001. They were trained on Tesla P100-
PCIE-16GB GPU kindly provided by Google Colab with batch size=64. Training
of each model took ≈ 3 hours.

Figure 7: tiny-YOLOv3-416 Figure 8: tiny-YOLOv3-256

Figure 9: tiny-YOLOv3-192 Figure 10: xnor tiny-YOLOv3-416

In order to reach good trade-off between accuracy and FPS I trained tiny-
YOLOv3 models with 416x416, 256x256 and 192x192 input size. Obtained
models were at first converted to Keras [5] and then to TensorflowJS [6] for
browser usage. You can observe validation results in the table below.

model number of iterations mAP.50 FPS

tiny-YOLOv3-416 8000 99.4 14

tiny-YOLOv3-256 10000 99.5 27

F tiny-YOLOv3-192 12000 99.3 35

XNOR tiny-YOLOv3-416 16000 88.1 15

Let’s play!
Final TensorFlowJS model(F) was used to control browser Breakout game via
webcam. Game was written on JS and HTML.
Controls:
• Use ”circle” gesture to move mouse cursor
• Use ”finger up” gesture to click on buttons
• Use ”fist” gesture to move the paddle
• Use ”pistol” gesture to detach the ball from sticky paddle

Figure 11: In-game footage

Results
Tiny-YOLOv3 models were trained on custom dataset. Fastest model was
selected and converted to TensorFlowJS to perform object detection in the
browser to control Breakout game. Code is available here: https://github.
com/vovaf709/Breakout-YOLO.

References

[1] A. Farhadi J. Redmon. Yolov3: An incremental improvement. https:

// arxiv. org/ pdf/ 1804. 02767. pdf , 2018.

[2] People who shared their videos with gestures.

[3] Yolo mark. https: // github. com/ AlexeyAB/ Yolo_ mark .

[4] Darknet. https: // github. com/ AlexeyAB/ darknet .

[5] Keras yolov3. https: // github. com/ qqwweee/ keras-yolo3 .

[6] Keras to tfjs. https: // github. com/ tensorflow/ tfjs/ tree/

master/ tfjs-converter .

https://github.com/vovaf709/Breakout-YOLO
https://github.com/vovaf709/Breakout-YOLO
https://arxiv.org/pdf/1804.02767.pdf
https://arxiv.org/pdf/1804.02767.pdf
https://github.com/AlexeyAB/Yolo_mark
https://github.com/AlexeyAB/darknet
https://github.com/qqwweee/keras-yolo3
https://github.com/tensorflow/tfjs/tree/master/tfjs-converter
https://github.com/tensorflow/tfjs/tree/master/tfjs-converter

