
Neural Style Transfer
Vera Burdina
Optimization Class Project. MIPT

Introduction
Since the original Neural Style transfer method [1] was published, various meth-
ods have been developed for transforming images from one domain to another.
However, their framework requires a slow iterative optimization process, which
limits its practical application. Fast approximations with feed-forward neural
networks have been proposed to speed up neural style transfer [2, 3, 4]. Unfor-
tunately, the speed improvement comes at a cost: the network is usually tied
to a fixed set of styles and cannot adapt to arbitrary new styles. In this project
a simple yet effective approach [5] is used, that enables arbitrary style transfer
in real-time. At the heart of the method is an adaptive instance normalization
(AdaIN) layer that aligns the mean and variance of the content features with
those of the style features, which allows it to achieve a high speed, without the
restriction to a predefined set of styles.

Adaptive Instance Normalization
AdaIN performs style transfer in the feature space by transferring feature statis-
tics, specifically the channel-wise mean and variance. Our AdaIN layer plays a
similar role as the style swap. It receives a content input x and a style input y,
and simply aligns the channel-wise mean and variance of x to match those of y.

𝐴𝑑𝑎𝐼𝑁(𝑥, 𝑦) = 𝜎(𝑦)

(︂
𝑥− 𝜇(𝑥)

𝜎(𝑥)

)︂
+ 𝜇(𝑦)

Unlike Instance Normalization, proposed in [6]:

𝐼𝑁(𝑥, 𝑦) = 𝛼

(︂
𝑥− 𝜇(𝑥)

𝜎(𝑥)

)︂
+ 𝛽

AdaIN has no learnable parameters 𝛼 and 𝛽, which allows to use any styles for
transferring, even those that were not in the training set.

Architecture
The style transfer network 𝑇 takes a content image c and an arbitrary style image
s as inputs, and synthesizes an output image that recombines the content of the
former and the style latter. In this project a simple encoder-decoder architecture
is adopted, in which the encoder 𝑓 is fixed to the first few layers of a pretrained
VGG-19. After encoding the content and style images in feature space, both
feature maps goes to an AdaIN layer that aligns the mean and variance of the
content feature maps to those of the style feature maps, producing the target
feature maps 𝑡:

𝑡 = 𝐴𝑑𝑎𝐼𝑁(𝑓 (𝑐), 𝑓 (𝑠))

samples instead of a single sample, it can be intuitively
understood as normalizing a batch of samples to be cen-
tered around a single style. Each single sample, however,
may still have different styles. This is undesirable when we
want to transfer all images to the same style, as is the case
in the original feed-forward style transfer algorithm [51].
Although the convolutional layers might learn to compen-
sate the intra-batch style difference, it poses additional chal-
lenges for training. On the other hand, IN can normalize the
style of each individual sample to the target style. Training
is facilitated because the rest of the network can focus on
content manipulation while discarding the original style in-
formation. The reason behind the success of CIN also be-
comes clear: different affine parameters can normalize the
feature statistics to different values, thereby normalizing the
output image to different styles.

5. Adaptive Instance Normalization

If IN normalizes the input to a single style specified by
the affine parameters, is it possible to adapt it to arbitrarily
given styles by using adaptive affine transformations? Here,
we propose a simple extension to IN, which we call adaptive
instance normalization (AdaIN). AdaIN receives a content
input x and a style input y, and simply aligns the channel-
wise mean and variance of x to match those of y. Unlike
BN, IN or CIN, AdaIN has no learnable affine parameters.
Instead, it adaptively computes the affine parameters from
the style input:

AdaIN(x, y) = �(y)

✓
x � µ(x)

�(x)

◆
+ µ(y) (8)

in which we simply scale the normalized content input
with �(y), and shift it with µ(y). Similar to IN, these statis-
tics are computed across spatial locations.

Intuitively, let us consider a feature channel that detects
brushstrokes of a certain style. A style image with this kind
of strokes will produce a high average activation for this
feature. The output produced by AdaIN will have the same
high average activation for this feature, while preserving the
spatial structure of the content image. The brushstroke fea-
ture can be inverted to the image space with a feed-forward
decoder, similar to [10]. The variance of this feature chan-
nel can encoder more subtle style information, which is also
transferred to the AdaIN output and the final output image.

In short, AdaIN performs style transfer in the fea-
ture space by transferring feature statistics, specifically the
channel-wise mean and variance. Our AdaIN layer plays
a similar role as the style swap layer proposed in [6].
While the style swap operation is very time-consuming and
memory-consuming, our AdaIN layer is as simple as an IN
layer, adding almost no computational cost.

V
G

G

E
ncoder

AdaIN

D
ec

od
er

V
G

G

E
ncoder

L௦

L௖Style Transfer Network

Figure 2. An overview of our style transfer algorithm. We use the
first few layers of a fixed VGG-19 network to encode the content
and style images. An AdaIN layer is used to perform style transfer
in the feature space. A decoder is learned to invert the AdaIN
output to the image spaces. We use the same VGG encoder to
compute a content loss Lc (Equ. 12) and a style loss Ls (Equ. 13).

6. Experimental Setup

Fig. 2 shows an overview of our style transfer net-
work based on the proposed AdaIN layer. Code and pre-
trained models (in Torch 7 [7]) are available at: https:
//github.com/xunhuang1995/AdaIN-style

6.1. Architecture

Our style transfer network T takes a content image c and
an arbitrary style image s as inputs, and synthesizes an out-
put image that recombines the content of the former and the
style latter. We adopt a simple encoder-decoder architec-
ture, in which the encoder f is fixed to the first few lay-
ers (up to relu4 1) of a pre-trained VGG-19 [48]. After
encoding the content and style images in feature space, we
feed both feature maps to an AdaIN layer that aligns the
mean and variance of the content feature maps to those of
the style feature maps, producing the target feature maps t:

t = AdaIN(f(c), f(s)) (9)

A randomly initialized decoder g is trained to map t back
to the image space, generating the stylized image T (c, s):

T (c, s) = g(t) (10)

The decoder mostly mirrors the encoder, with all pooling
layers replaced by nearest up-sampling to reduce checker-
board effects. We use reflection padding in both f and g
to avoid border artifacts. Another important architectural
choice is whether the decoder should use instance, batch, or
no normalization layers. As discussed in Sec. 4, IN normal-
izes each sample to a single style while BN normalizes a
batch of samples to be centered around a single style. Both
are undesirable when we want the decoder to generate im-
ages in vastly different styles. Thus, we do not use normal-
ization layers in the decoder. In Sec. 7.1 we will show that
IN/BN layers in the decoder indeed hurt performance.

Figure 1: Architecture scheme.

A randomly initialized decoder 𝑔 is trained to map t back to the image space,
generating the stylized image 𝑇 (𝑐, 𝑠):

𝑇 (𝑐, 𝑠) = 𝑔(𝑡)

Another important architectural choice is whether the decoder should use in-
stance, batch, or no normalization layers. As discussed in [6], IN normalizes
each sample to a single style while BN normalizes a batch of samples to be
centered around a single style. Both are undesirable when we want the decoder
to generate images in vastly different styles. Thus, there is no normalization
layers in the decoder.

Training
The network is trained using 3236 random images of MS-COCO dataset [7] as
content images and 3381 random images from dataset of paintings collected
from WikiArt as style images. The adam optimizer and a batch size of 8
content-style image pairs is used. During training, the smallest dimension of
both images is first resized to 512 while preserving the aspect ratio, then regions
of size 256×256 are randomly croped . Since the network is fully convolutional,
it can be applied to images of any size during testing.

To compute the loss function to train the decoder the pretrained VGG-19 is
used:

𝐿 = 𝐿𝑐 + 𝜆𝐿𝑠

where 𝐿𝑐 is a content loss, 𝐿𝑠 is a style loss and 𝜆 = 10 is a style loss weight.

𝐿𝑐 = ||𝑓 (𝑔(𝑡))− 𝑡||2

Since our AdaIN layer only transfers the mean and stan- dard deviation of the
style features, our style loss only matches these statistics. So the style loss
function is taken from [5]:

𝐿𝑠 =

𝑃∑︁

𝑖=1

||𝜇(𝜑𝑖(𝑔(𝑡)))− 𝜇(𝜑𝑖(𝑠))||2+

+

𝑃∑︁

𝑖=1

||𝜎(𝜑𝑖(𝑔(𝑡)))− 𝜎(𝜑𝑖(𝑠))||2

where 𝜑𝑖 denotes a layer in VGG-19.

Figure 2: Visualization of model inference during training stages (from left to
right: 20, 40, 60, 80, 100 thousands iterations).

Figure 2 and Figure 3 represent the training dynamics of the decoder. As
we can see, content loss and style loss monotonically go down during training
process, excpet for sharp explosion at 20 and 28 thousand iteration. This
unusual behaviour can explained by relaunching training procedure in Google
Colab.

0 20 40 60 80 100

200

400

600

800

1000

1200
style loss
content loss
total loss

Figure 3: Loss vs number of training iterations.

Results
A social survey was created as a metric of the quality of the style transfer algo-
rithm. Survey participants were asked to evaluate the quality of the transmission
of style for 10 different pairs of content and style images on a 10-point scale.
The survey involved 52 people. The average rating for each individual image
ranges from 6.3 to 8.7, the average rating for all images is 7.3, which shows a
fairly high quality of the algorithm performance.

The final of this project was the implementation of a telegram bot, that performs
style transfer - @SpicyItalianBot. Code is available here.

Figure 4: An example of the project outcome.

References

[1] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convo-
lutional neural networks. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2414–2423, 2016.

[2] Justin Johnson, Alexandre Alahi, and Fei-Fei Li. Perceptual losses for real-
time style transfer and super-resolution. CoRR, abs/1603.08155, 2016.

[3] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[4] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. Demystifying neural
style transfer. CoRR, abs/1701.01036, 2017.

[5] Xun Huang and Serge J. Belongie. Arbitrary style transfer in real-time with
adaptive instance normalization. CoRR, abs/1703.06868, 2017.

[6] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S. Lempitsky.
Texture networks: Feed-forward synthesis of textures and stylized images.
CoRR, abs/1603.03417, 2016.

[7] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev,
Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. Microsoft COCO: common objects in context.
CoRR, abs/1405.0312, 2014.

https://t.me/SpicyItalianBot
https://github.com/veraburdi/Image-Style-Transfer

