Neural Style Transfer

Vera Burdina
Optimization Class Project. MIPT

Introduction

Since the original Neural Style transfer method [1] was published, various meth-
ods have been developed for transforming images from one domain to another.
However, their framework requires a slow iterative optimization process, which
limits its practical application. Fast approximations with feed-forward neural
networks have been proposed to speed up neural style transfer [2, 3, 4]. Unfor-
tunately, the speed improvement comes at a cost: the network is usually tied
to a fixed set of styles and cannot adapt to arbitrary new styles. In this project
a simple yet effective approach [5] is used, that enables arbitrary style transfer
in real-time. At the heart of the method is an adaptive instance normalization
(AdalN) layer that aligns the mean and variance of the content features with
those of the style features, which allows it to achieve a high speed, without the
restriction to a predefined set of styles.

Adaptive Instance Normalization

AdalN performs style transfer in the feature space by transferring feature statis-
tics, specifically the channel-wise mean and variance. Our AdalN layer plays a
similar role as the style swap. It receives a content input x and a style input vy,
and simply aligns the channel-wise mean and variance of x to match those of y.

AdalIN(z,y) = o(y) (x — u(a?)) + u(y)

o(x)

Unlike Instance Normalization, proposed in [6]:

IN(z,y) = a<$ - “(’I)) + 5

o()

AdalN has no learnable parameters v and 3, which allows to use any styles for
transferring, even those that were not in the training set.

A randomly initialized decoder ¢ is trained to map t back to the image space,
generating the stylized image T'(c, s):

T(c,s) = g(t)

Another important architectural choice is whether the decoder should use in-
stance, batch, or no normalization layers. As discussed in [6], IN normalizes
each sample to a single style while BN normalizes a batch of samples to be
centered around a single style. Both are undesirable when we want the decoder
to generate images in vastly different styles. Thus, there is no normalization
layers in the decoder.

Architecture

The style transfer network 7" takes a content image c and an arbitrary style image
s as inputs, and synthesizes an output image that recombines the content of the
former and the style latter. In this project a simple encoder-decoder architecture
is adopted, in which the encoder f is fixed to the first few layers of a pretrained
VGG-19. After encoding the content and style images in feature space, both
feature maps goes to an AdalN layer that aligns the mean and variance of the
content feature maps to those of the style feature maps, producing the target
feature maps t:

t = AdalN(f(c), f(s))

Figure 1: Architecture scheme.

Training

The network is trained using 3236 random images of MS-COCO dataset [/] as
content images and 3381 random images from dataset of paintings collected
from WikiArt as style images. The adam optimizer and a batch size of 8
content-style image pairs is used. During training, the smallest dimension of
both images is first resized to 512 while preserving the aspect ratio, then regions
of size 256 X 256 are randomly croped . Since the network is fully convolutional,
it can be applied to images of any size during testing.

To compute the loss function to train the decoder the pretrained VGG-19 is
used:

L =Lc+ ALg

where L. is a content loss, Lg is a style loss and A = 10 is a style loss weight.

Le =[] f(g(t)) = t]]2

Since our AdalN layer only transfers the mean and stan- dard deviation of the
style features, our style loss only matches these statistics. So the style loss
function is taken from [5]:

P
Ls = > lu(ei(g() — p(ei(s))| |2+
i—1

P
+ > Mlo(dilg(1)) — a(di(s))ll2
1=1

where ¢; denotes a layer in VGG-19.

Figure 2: Visualization of model inference during training stages (from left to
right: 20, 40, 60, 80, 100 thousands iterations).

Figure 2 and Figure 3 represent the training dynamics of the decoder. As
we can see, content loss and style loss monotonically go down during training
process, excpet for sharp explosion at 20 and 28 thousand iteration. This

unusual behaviour can explained by relaunching training procedure in Google
Colab.

—— style loss
—e— content loss
—e— total loss

00000

Figure 3: Loss vs number of training iterations.

Results

A social survey was created as a metric of the quality of the style transfer algo-
rithm. Survey participants were asked to evaluate the quality of the transmission
of style for 10 different pairs of content and style images on a 10-point scale.
The survey involved 52 people. The average rating for each individual image
ranges from 6.3 to 8.7, the average rating for all images is 7.3, which shows a
fairly high quality of the algorithm performance.

The final of this project was the implementation of a telegram bot, that performs
style transfer - @SpicyltalianBot. Code is available here.

Figure 4: An example of the project outcome.

References

[1] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convo-
lutional neural networks. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2414-2423, 2016.

[2] Justin Johnson, Alexandre Alahi, and Fei-Fei Li. Perceptual losses for real-
time style transfer and super-resolution. CoRR, abs/1603.08155, 2016.

[3] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[4] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. Demystifying neural
style transfer. CoRR, abs/1701.01036, 2017.

[5] Xun Huang and Serge J. Belongie. Arbitrary style transfer in real-time with
adaptive instance normalization. CoRR, abs/1703.06868, 2017.

[6] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S. Lempitsky.
Texture networks: Feed-forward synthesis of textures and stylized images.
CoRR, abs/1603.03417, 2016.

[7] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev,
Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar,
and C. Lawrence Zitnick. Microsoft COCO: common objects in context.

CoRR, abs/1405.0312, 2014.

https://t.me/SpicyItalianBot
https://github.com/veraburdi/Image-Style-Transfer

