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Introduction
In the tasks of minimization of convex, but not necessarily smooth and strongly
convex, the functions of a large number of summands cannot be obtained linear
convergence using the gradient descent and gradient reduction methods. If the
space dimension is small, the ellipsoid method can be used to obtain linear con-
vergence. The calculation of the gradient of the total amount can be replaced
by batching. The two approaches above lead to a method of variance reduction
for the ellipsoidal method.

Notation

• X — given convex and compact set

• n — space dimension

• N — number of iterations

• c — center of ellipsoid

• r — radius of ball incircled of X

• R — radius of ball excircled of X

• ∇f — true gradient

• ∇kf — batch gradient

• ∂kf — batch subgradient

Ellipsoid method
Let f : X → [−B,B] — continious convex function. X — convex compact,
which is contained in the eucledian ball radius of R and is contained eucledian
ball radius of r.

Algorithm 1: Ellipsoid method with batching
Input: Number of iteration N , ball BR ⊇ X , c — center and R – radius
Output: x̃ ∈ Rn
E0← BR, H0← R2In, c0← c;
for t = 0, . . . , N − 1 do

if ct ∈ X then

wt← w ∈ ∂kf (ct);
if wt = 0 then

x̃← ct;
return x̃

end
else

wt← w, where w 6= 0, and X ⊂
{
x ∈ El : wT (x− cl) ≤ 0

}
end

ct+1← ct − 1
n+1

Htwt√
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t Htwt

;

Ht+1← n2
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T
t Ht

wT
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)
;

Et+1←
{
x : (x− ct+1)T H−1

t+1 (x− ct+1) ≤ 1
}

end
return x̃ = argmin

x∈{c0...cN}∩X
f (x)

Theorem
For N ≥ 2n2 ln R

r ellipsoid method with batching return x̃ ∈ X, s.t.

f (x̄)− f (x∗) ≤
2BR

r
exp

(
− N

2n2

)
+ δ

with the probability equals to
[
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(
δ
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[∫ δ
σR

0
xn−1e−x

2/2

2n/2−1Γ(n/2)
dx

]N
Theorem proof
Suppose the difference between the true gradient and the batching gradient
∇f − ∇kf is distributed as N (0, σ2). Then euclidean norm of difference
‖∇f − ∇kf‖2 will have chi distribution multiplied by σ. To estimate δ for
δ-subgradient we can use Cauchy-Schwarz inequality.

f (y) > f (x) + 〈∇f, y − x〉 ∧ f (y) > f (x) + 〈∇f, y − x〉 − δ

〈∇f −∇kf, y − x〉 6 ‖∇f −∇kf‖‖R‖ = δ

As ‖∇f −∇kf‖ is a random variable to gain convergence rate we can use the
proved theorem for constant δ-subgradient if we take max

1...N
δk.

Using our assumption we can estimate the probability of max on N iterations
will be less than δ. Distribution of maximum is:[

F

(
δ

σR

)]N
=

[∫ δ
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2/2
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]N

In an equal way, we can estimate the expected value:

Eδ = σRN

∫ ∞
0

y [F (y)]N−1 yn−1e−y
2/2

2n/2−1Γ(n/2)
dy

Estimation of σ can be done through an assumption that the expected value of
the square norm of difference between true gradient and one element gradient
less than D:

E‖∇f − ∇1f‖22 6 D

Then according to batching, we have such estimate for the batch gradient

E‖∇f − ∇kf‖22 6
D

k

Distribution of squared gradient difference in our assumption will have chi-
squared distribution multiplied by σ2. Then the expected value of this distribu-
tion is σ2n 6 D

k and we gain estimate for σ what completes the proof.

Numerical experiment
The proposed method was investigated on MNIST dataset. Two classes: ”3”
and ”6” were chosen for a binary classification task. As loss function, we have
chosen SVM loss + l2 regularization, because this task meets our conditions
of convexity and smoothness. Data dimension was reducted from 784 to 100
through PCA[5]. After this, data was normalized. The initial ellipsoid was a ball
with the centre in zero and the radius is equal to 5.0. The stopping criterium
was H-norm of the gradient is less than (0.1)−100. The code is available on
github/anvilarth

Results
Results on every batch size were averaged over 30 iterations.
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Conclusion
Proposed theoretical explanation of batching ellipsoid method. Gained estimate
of convergence rate. We evaluate the batching method of SVM task and show
practical applicability for batched ellipsoid method. In future works, we will try
to improve this estimate or prove its imperfection.
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