
Federated Learning for brain segmentation
Alexander Samoylenko
Optimization Class Project. MIPT

Introduction
Deep learning methods require a large amount of data for training. This prob-
lem is relevant for medical images, firstly, due to the relatively small number
of recorded cases of a specific disease in a particular medical institution, and
secondly, because labelling of medical images requires professional knowledge .
A possible solution to this problem could be the joint work of several medical
centers, however, centralizing the data on one machine or in a datacenter is
often impossible because of a number of technical and legal restrictions. Due
to these limitations, in recent years Federated learning, a concept of distributed
learning that does not require centralized data storage, is gaining popularity.
In this paper, we are comparing performance of neural networks trained using
Federated learning approach and networks trained in the classical way on the
example of brain segmentation task.

Concept
Consider an architecture where training data is separated between n servers
each of which may only interact with an aggregation server. In this case single
training epoch for Federated Learning consists of the following parts:

• Send copies of centralized model to every data server;

• Train every model independently on local training data;

• Send locally trained models back to the aggregation server;

• Average weights of local models to obtain updated centralized model.

Figure 1: System architecture of Federated Learning

Problem
We search for a function f (neural network) that maps input brain MRI images
x to corresponding binary masks y:

f : x→ y

For the training data we have MRI scans taken from 6 different MRI scanners
(Siemens 1.5T/3.T, GE 1.5T/3T, Phillips 1.5T/3T). Data is split into 6 do-
mains in accordance with MRI scanners so that every domain corresponds to
single data server where local training is conducted.

As an architecture of neural network we use U-Net that showed promising results
in various segmentation tasks with lack of training data.

Figure 2: Different data domains

Algorithm
Data server

model = Recv(aggregation_server);

for epoch = 1:local_epochs

for batch in local_batches

train_model(model, batch);

Send(model, aggregation_server);

Aggregation server

for epoch = 1:global_epochs

models = [];

for server in data_servers

Send(model, server);

for server in data_servers:

updated_model = Recv(server);

models.append(updated_model);

model = average_weights(models)

Averaging techniques
Two averaging techniques were tested which are:

1. Dataset size based averaging (DS averaging);

2. Validation loss value averaging (VL averaging).

Below the we can see graphics representing training process for both tech-
niques. VL avegaing seemed to explode at the last epochs.

Figure 3: Averaging techniques

Training process
For model performance comparison we end up with training 2 models: Federated
U-Net and straightforward U-Net with no data separation.

All of the models were trained using Adam optimizer with initial learning rate of
5 · 10−3. Federated U-Net was trained for 50 global rounds and 3 local epochs
with LR-Scheduler multiplying learning rate by 0.5 on each of the following
global rounds: 10, 20, 30, and multiplying by 0.1 on 40 and 45 epochs.

Model with no Federated approach was trained for 200 epochs with LR-Scheduler
multiplying learning rate by 0.5 every 30 epochs.

All models were created and trained using PyTorch framework.

Results
The first table shows difference in models training time.

Non-Federated Sequential Federated Parallel Federated
Time, hours 30 20 8

Test metrics of Federated and non-Federated U-Net for every image domain are
represented below.

Algorithm
Dice Score

Dom. 1 Dom. 2 Dom. 3 Dom. 4 Dom. 5 Dom. 6 Overall
Non-Federated U-Net 0.9892 0.9955 0.9954 0.9959 0.9959 0.9970 0.9949

Federated U-Net 0.9945 0.9951 0.9955 0.9955 0.9809 0.9824 0.9907

The next table shows relative change of Dice Score in comparison with Non-
Federated U-Net.

Algorithm
Dice Score change

Dom. 1 Dom. 2 Dom. 3 Dom. 4 Dom. 5 Dom. 6 Overall
Non-Federated U-Net 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Federated U-Net +0.54% -0,04% +0,01 % -0,04% -1,50 % -1,46 % -0.42%

We can see that Federated U-Net shows comparable results and achieves
99.5 % of the model performance of a data-sharing model (non-Federated).
Code for Federated model training is available here https://github.com/

samoyl11/FederatedUNethere.

Figure 4: Examples of Federated model prediction

Conclusion and futher steps
Our experiments demonstrate that it is possible to train a model with com-
parable results without data-sharing. The futher step is increasing number of
domains (adding coronal and sagittal projections).

https://github.com/samoyl11/FederatedUNet
https://github.com/samoyl11/FederatedUNet

