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Proximal stochastic gradient

Context

Here we tackle the following problems:

min
w

F pwq ` gpwq

where F pwq can be the expected risk or the empirical risk, gpwq is a
regularization function for promoting structure on the solution w‹ or
avoid over-fitting (ex: Tikhonov regularization).

Strongly-convex assumption: given F pwq convex, using a
strongly-convex function gpwq makes the objective function
F pwq ` gpwq strongly convex, hence ensuring good rates for SGD,
and a unique minimizer.

Moreover: for general functions, it improves the local smoothness, in
particular we may get ”locally Lipschitz” function, even if it is not
globally, improving local convergence.
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Proximal stochastic gradient

Assumptions

For simplicity, we assume:

g has a simple proximal operator (in the sense that it can be
computed easily).

Recall: the proximal operator associated to a function g with
parameter λ ą 0, is a mapping proxg ,λ : Rd Ñ Rd , calculated as
follows:

proxg ,λpvq “ arg min
wPW

tgpwq `
1

2λ
}w ´ v}2u

Ñ an unconstrained opt. prob. on its own !!

Some proximal operators can be computed in closed form :) ! Ñ

Example: gpwq “ }w}1, see ADMM lecture notes (slides 39 -47) for an
introduction and examples.
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Proximal stochastic gradient

Proximal Stochastic Gradient Descent Algorithm

Initialization

Set w1 P W.

Iteration (k ě 1):

1 Generate a realization of the random variable ξk
2 Compute a stochastic vector ∇f pwk ; ξkq

3 Choose a step size αk ą 0

4 Set
vk`1 Ð wk ´ αk∇f pwk ; ξkq (1)

5 Set

wk`1 Ð proxg ,αk
pvk`1q “ arg min

wPW
tgpwq `

1

2αk
}w ´ vk`1}2u (2)
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Proximal stochastic gradient

Proximal Stochastic Gradient Descent Algorithm

Interpretation:

wk`1 Ð proxg ,αk
pwk ´ αk∇f pwk ; ξkqq

from the definition of the proximal operator:

wk`1 :“ arg min
wPW

tgpwq `
1

2αk
}w ´ wk ` αk∇f pwk ; ξkq}2u

arg min
wPW

tgpwq ` f pwk ; ξkq ` x∇f pwk ; ξkq,w ´ wky `
1

2αk
}w ´ wk}2u

wk`1 minimizes gpwq plus a simple quadratic local model of f pw ; ξkq

around wk .
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Proximal stochastic gradient

Proximal Stochastic Gradient Descent Algorithm

Interpretation:

wk`1 Ð proxg ,αk
pwk ´ αk∇f pwk ; ξkqq

The term proximal refers to the presence of the third term in the
minimization problem on the right-hand side,

encourages the new iterate to be close to wk ,

Notice that if the regularization (i.e., last) term were not present, we
would exactly recover the stochastic gradient method
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Proximal stochastic gradient

Prox. SGD for strongly cvx functions - decreasing αk

Here: we give a brief convergence result for Proximal SGD, first we make
several assumptions

Assumptions 3

g is a proper convex, closed and proper function,

F pwq is c-strongly convex and has a L-Lipschitz gradient,

there exists M ą 0 such that Vξk r∇f pwk ; ξkqs ď M.

here exists w‹ P argminF ` g ,

the sequence αk is deterministic, satisfies αk “ a
cpk`bq

for given a ą 1

and b ą 0 such that α1 “ a
cb ď 1

2L
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Proximal stochastic gradient

Prox. SGD for strongly cvx functions - decreasing αk

Theorem 5 (Proof Part 3)

Under assumptions 3, the iterates of the proximal stochastic gradient
algorithm satisfy the convergence rate (in terms of distance to the
optimum):

Er}wk ´ w‹}2s ď

4a2M
pa´1qc2

k ` b
„ Op

1

k
q (3)
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Noise Reduction Methods

Motivation

In previous sections:

The theoretical arguments developed have led many in the machine
learning community to view SGD as the ideal optimization approach
for large-scale applications.

however: that this is far from settled !

Indeed: SGD suffers from, among other things, the adverse effect of
noisy gradient estimates:

1 prevents it from converging to the solution when fixed stepsizes are
used,

2 leads to a ”slow”, sublinear rate of convergence when a diminishing
stepsize sequence tαku8

k`1 is employed.
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Noise Reduction Methods

Motivation

In this section:

Solution: develop methods endowed with noise reduction capabilities
(reduce the errors in the gradient estimates and/or iterate sequence).

Three main classes:
1 dynamic sampling methods, achieve noise reduction by gradually

increasing the minibatch size used in the gradient computation
Ñ employing increasingly more accurate gradient estimates

2 Gradient aggregation methods: improve the quality of the search
directions by storing gradient estimates corresponding to samples
employed in previous iteration.

3 iterate averaging methods: accomplish noise reduction not by
averaging gradient estimates, but by maintaining an average of iterates
computed during the optimization process.
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Noise Reduction Methods

high-level summary for convergence rates

dynamic sampling methods: linear rate of convergence to the optimal
value using a fixed stepsize.

Gradient aggregation methods: linear rate of convergence to the
optimal value using a fixed stepsize.

iterate averaging methods: uses a more agressive stepsize sequence,
of order Op 1?

k
q instead of Op 1

k q

Ñ really appealing because:....it is this sequence of averaged iterates
that converges to the solution !
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Noise Reduction Methods

Organization of this section

1 formal motivation of noise reduction concept: a fundamental result
that stipulates a rate of decrease in noise that allows an SGD-type
method to converge at a linear rate.

2 three gradient aggregation methods — SVRG, SAGA, and SAG.

3 discussion of the practical and theoretical properties of iterate
averaging methods.
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Noise Reduction Methods

Reducing Noise at a Geometric Rate

Let us recall Lemma 1:

Eξk rF pwk`1qs ´ F pwkq ď ´ αkx∇F pwkq,Eξk r∇f pwk ; ξkqsy`

α2
kL

2
Eξk r}∇f pwk ; ξkq}2s

(4)

Intuitively:

1 if ´∇f pwk ; ξkq is a descent direction in expectation (first term of
RHS is negative),

2 and if we ”manage” to decrease Eξk r}∇f pwk ; ξkq}2 ”fast enough”,

then: the effect of having noisy directions will not impede a fast rate of
convergence !
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Noise Reduction Methods

Reducing Noise at a Geometric Rate

Formally: Consider SGD with fixed step sizes for strongly convex
functions; if Vξk r∇f pwk ; ξkqs decreases geometrically, then sequence of
expected optimality gaps vanishes at linear rate.

Theorem 6 (Proof on the board)

Suppose that assumptions 1, 2 and 3, but with the existence of constants
M ą 0 and ζ P p0, 1q such that for all k P N :

Vξk r∇f pwk ; ξkqs ď Mζk´1 (5)

Moreover, suppose SGD is ran with fixed step size 0 ă α ď mint
µ

Lµ2
G
, 1
cµu.

Then the expected optimality gap satisfies:

ErF pwkq ´ F ‹s ď ωρk´1 (6)

with ω :“ maxtαLM
cµ ,F pw1q ´ F ‹u, and ρ :“ maxt1 ´

αcµ
2 , ζu ă 1.
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Noise Reduction Methods

Gradient Aggregation

Main idea: achieve a lower variance by reusing and or/ revising
previously computed information.

Key: say that the current iterate has not been displaced too far from
previous iterates,
Ñ stochastic gradient information from previous iterates may still be
useful !

Moreover: say one maintains indexed gradient estimates in storage,
then one can revise specific estimates as new information is collected.

Attention: we focus on the min. of the empirical risk.
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Noise Reduction Methods

Stochastic variance-reduced gradient (SVRG)

Main principle

operates in cycles.

At the beginning of each cycle: compute a batch gradient:
∇F pwkq “ 1

n

řn
i ∇fi pwkq

Initialize: w̃1 Ð wk

Perform a set of m inner iterations indexed by j as follows:

w̃j`1 Ð w̃j ´ α
`

∇fij pw̃jq ´
`

∇fij pwkq ´ ∇F pwkq
˘˘

with ij P t1, ..., nu chosen random.
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Noise Reduction Methods

SVRG

Initialization: Set w1 P W, stepsize α ą 0 and positive integer m.

Iteration (k ě 1):

1 Compute the batch gradient ∇F pwkq

2 Initialize w̃1 Ð wk

3 for j “ 1 : m

Choose ij „ Up1, ..., nq

w̃j`1 Ð w̃j ´ α
`

∇fij pw̃jq ´
`

∇fij pwkq ´ ∇F pwkq
˘˘

end for

4 Option (a): wk`1 :“ w̃m`1

5 Option (b): wk`1 :“
1
m

řm
j“1 w̃j`1

6 Option (c): Choose j „ Up1, ...,mq, and wk`1 :“ w̃j`1
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Noise Reduction Methods

SVRG

Insights on step 3, for simplicity pose
g̃j :“

`

∇fij pw̃jq ´
`

∇fij pwkq ´ ∇F pwkq
˘˘

EijPt1,...,nur∇fij pwkqs “ ∇F pwkq,

∇fij pwkq ´ ∇F pwkq seen as the bias in the gradient estimate ∇fij pwkq

in every iteration: SVRG draws a stochastic gradient ∇fij pw̃jq

evaluated at current inner iterate w̃j and correct it based on perceived
bias

Overall : the stochastic vector g̃j represents an unbiased estimator of
∇F pw̃jq

but with a variance that one can expect to be smaller than if one
were simply to chose g̃j :“ ∇fij (as for SGD)
Ñ ”Variance reduced method”
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Noise Reduction Methods

SVRG

Comments on ”Options”

For both Options (b) and (c) and for min. of strongly convex
functions, SVRG achieves a linear rate of convergence.

Formally: if we choose m (number of inner loops) and α such that:

ρ :“
1

1 ´ 2αL

ˆ

1

mcα
` 2Lα

˙

ă 1 (7)

then we obtain:

ErF pwk`1q ´ F ‹s ď ρErF pwkq ´ F ‹s (8)

This result applies for the outer iterates twku where step from wk to
wk`1 requires 2m ` n evaluations of the gradients.

Therefore: one iteration of SVRG is much more expensive than one
of SGD, and in fact is comparable to a full gradient iteration.
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Noise Reduction Methods

SAGA

Main principle

iteration that is closer in form to SGD: does not operate in cycles, nor
does it compute batch gradients (except possibly at the initial point).

At each it.: computes a stochastic vector gk as the average of
stochastic gradients evaluated at previous iterates.

Specifically: at it. k , method will have stored ∇fi pwrisq for all
i P t1, ..., nu, where wris represents the latest iterate at which ∇fi was
evaluated.

Then: choose j „ Up1, ..., nq, the stochastic vector is set to:

gk Ð ∇fjpwkq ´ ∇fjpwrjsq `
1

n

n
ÿ

i“1

∇fi pwrisq (9)
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Noise Reduction Methods

SAGA

Initialization: Set w1 P W, stepsize α ą 0.

Storage:

for i “ 1 : n

1 Compute ∇fi pw1q

2 Store ∇fi pwrisq Ð ∇fi pw1q

end for

Iteration (k ě 1):

1 Choose j „ Up1, ..., nq

2 Compute ∇fjpwkq

3 Set gk Ð ∇fjpwkq ´ ∇fjpwrjsq ` 1
n

řn
i“1∇fi pwrisq

4 Store ∇fjpwrjsq Ð ∇fjpwkq

5 Set wk`1 Ð wk ´ αgk
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Noise Reduction Methods

SAGA

Insights:

Taking the expectation of gk with respect to all choices of
j P t1, ..., nu: Ergk s “ ∇F pwkq

Hence: method employs unbiased gradient estimates, but with
variances less than the stochastic gradients employed by SGD

Putting aside the ”storage” phase: the per-iteration cost of SAGE is
the same as in a basic SGD method.

However: SAGA enjoys linear rate of convergence for min. of
strongly convex F pwq (=empirical risk).

Result: with α “ 1
2pcn`Lq

:

Er}wk ´ w‹}2s ď p1 ´
1

2pcn ` Lq
qkp}w1 ´ w‹}2 ` C q (10)

for some constant C (not detailed here).
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Noise Reduction Methods

SAGA

Insights:

Tips: previous result requires knowledge of the strong convexity
constant c and L. If c is not known, then the stepsize can instead be
chosen to be α “ 1

3L and a similar convergence result can be
established.

important drawback: need to store n stochastic gradient vectors,
which would be prohibitive in many large-scale applications.

History:SAGA has its origins in the stochastic average gradient
(SAG) algorithm, the main difference:

gk Ð
1

n

˜

∇fjpwkq ´ ∇fjpwrjsq `

n
ÿ

i“1

∇fi pwrisq

¸
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Noise Reduction Methods

Gradient Aggregation - commentary

Even if linear rates have been proved (for strongly convex case),
Gradient Aggregation methods should not be considered as superior
to SGD !

One can prove that the computing time:

1 for SGD: T pn, ϵq „
p L
c q

2

ϵ ,
2 for SVRG, SAGA and SAG: T pn, ϵq „ pn ` L

c q logp1{ϵq
Ñ increase with n!

Hence: for large n, gradient aggregation methods are comparable to
batch methods, and cannot beat SGD.

Moreover: for L{c “ 1, SGD is optimal.

but for L{c " n, gradient aggregation methods may be superior.

Anyway: interesting methods due to clever use of past info.
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Noise Reduction Methods

Iterate Averaging Methods

Starting point: SGD generates noisy iterate sequences that tend to
oscillate around minimizers.
Natural idea: compute a corresponding sequence of iterate averages
(automatically possess less noisy behavior).
Algorithmic principle: employ the iteration

wk`1 Ð wk ´ αk∇f pwk ; ξkq

w̃k`1 Ð
1

k ` 1

k`1
ÿ

j“1

wj
(11)

Hope: the auxiliary sequence tw̃ku8
k“1 possesses better convergence

properties than SGD iterates.
But.. with diminishing step size sequence with rate Op1{kq, not the
case !!
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Noise Reduction Methods

Iterate Averaging Methods

Fundamental advancement - the work of (Polyak, 1991): rate for
diminishing step size should be Op 1

ka q with a P p12 , 1q.

See works of (Juditsky el al., 1992), (Ruppert,1988) and (Nemirovski
et al., 1978) for more details.

Results:

Er}wk ´ w‹}2s „ Op
1

ka
q

Er}w̃k ´ w‹}2s „ Op
1

k
q

(12)

Fruitful consequences: this idea of sequence of averaged iterates has
been fundamental in many central and even recent works.
Main goal : allow longer steps while maintaining desired rates of
convergence.
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Noise Reduction Methods

So many things we skipped :)

More stochastic methods:

Stochastic quasi-Newton methods: estimate the inverse of the
Hessian Bk and use the step:

wk`1 Ð wk ´ αkBk∇f pwk ; ξkq (13)

Adaptive step-sizes: step-size sequence adapted to the problem at
stake, most famous methods are Adagrad and Adam.

Coordinate descent methods: update a subset of variables at a time.

Accelerated SGD; see, e.g., Ghadimi and Lan (2016), Accelerated
gradient methods for nonconvex nonlinear and stochastic
programming. Mathematical Programming, 156(1-2), 59-99.
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Numerical tests - hard-coded NN

Table of Contents

1 Proximal stochastic gradient

2 Noise Reduction Methods

3 Numerical tests - hard-coded NN

Dr. Ir. Valentin Leplat (Skoltech) ISP Seminar - Part 2 24 th Jan. 2023 30 / 47



Numerical tests - hard-coded NN

Numerical tests

Goals:

1 implement and benchmark some methods presented in this course,

2 on a small and hand-able NN: build the so-called ”back-propagation”
along with the selected stochastic method
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Numerical tests - hard-coded NN

Test setup

Context: consider the set of points: labeled data—some points are in class 1,

indicated by red circles, and the rest are in class 2, indicated by blue crosses.
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Numerical tests - hard-coded NN

Test setup

Our job: construct a prediction function hpxi ;wq that takes any point in
xi P R3 and returns either a circle or a cross.
Form of h: before training h to do this task, we need to fix its form: we
consider the network presented in the figure below:
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Numerical tests - hard-coded NN

Forward Propagation

If new for you: here-under a very simple and step by step explanation:

Layer 1: represented by three circles, since our input vector xi have
three components.
Layer 2: four solid circles, indicating that fours neurons are being
employed.
First connections: arrows from layer 1 to layer 2 indicate that all the
three components of the input data are made available to the four
neurons in layer 2.
Weight and bias: input data has the form xi P R3: weights and
biases for layer 2 may be represented by a matrix W r2s P R4ˆ3 and a
vector br2s P R4 resp.
Layer output: output from layer 2 has the form:

ΦpW r2sxi ` br2sq P R4 (14)

with Φp.q the so-called activation function of the layer at hand, here
we choose the sigmoid function Φpxq “ 1

1`e´x applied

component-wise. (Φ
1

pxq “ Φpxqp1 ´ Φpxqq)
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Numerical tests - hard-coded NN

Forward Propagation - more

Layer 3: has four neurons, each receiving input in R4, so the weights
and biases for layer 3 may be represented by a matrix W r3s P R4ˆ4

and a vector br3s P R4 resp. The ouput has the form:

ΦpW r3sΦpW r2sxi ` br2sq ` br3sq P R4 (15)

Layer 4 - Output: the output from layer 4, and hence from the
overall network, has the form:

hpxi ;wq “ ΦpW r4sΦpW r3sΦpW r2sxi ` br2sq ` br3sq ` br4sq P R2 (16)

with w “ tpW rls, brlsqu4l“2 the parameters, the variables.
Denoting txiu

n
i“1 our input data points, we use yi for the target

output; that is: yi “

„

1
0

ȷ

if xi is in class 1, and yi “

„

0
1

ȷ

if xi is in

class 2.
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Numerical tests - hard-coded NN

Forward Propagation - loss function

In this numerical test, we have access to n realizations ξris “ pxi , yi q
with i “ 1, ..., n.

Now: it is time to train the network, that is finding values for
parameters/variables w such that h : R3 Ñ R2 such that
hpxi ;wq “ yi for most i (1 ď i ď n).

Loss function: with the notations of Part 1, we consider the loss
function lphpxi ;wq, yi q “ 1

2}hpxi ;wq ´ yi}
2
2

Optimization Problem: we want to min. the empirical risk function,
that is we want to solve :

min
w

F pwq :“
1

n

n
ÿ

i“1

1

2
}hpxi ;wq ´ yi}

2
2 (17)
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Numerical tests - hard-coded NN

Forward Propagation - generalization

General notation: for a general network

The network has L layers, with layers 1 and L being the input and
output layers,
Suppose that layer l , for l “ 1, 2, 3, ..., L contains nl neurons; n1 is the
dimension of the input data (we used dx in Introduction of Part 1).
Overall: the network maps from h : Rn1 Ñ RnL .
Weight and biases: use W rls P Rnlˆnl´1 (weight matrix at layer l)
and brls P Rnl the vector of biases for layer l (neuron j at layer l uses

the bias b
rls
j ).

Activation: given an input xi P Rn1 , we summarize the action of the

network by letting a
rls
j denote the output, or activation, from neuron j

at layer l :

ar1s “ xi P Rn1

arls “ ΦpW rlsarl´1s ` brlsq P Rnl for l “ 2, 3, ..., L
(18)
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Numerical tests - hard-coded NN

Back Propagation

To apply our stochastic methods to min. Problem (17) and then train
the network, we need compute the partial derivatives (the gradients

for each parameter) of the objective function w.r.t each W
rls
jk and b

rls
j .

For a selected and fixed input point xi , denote arLs :“ hpxi ;wq.

To ease the expressions of the partial derivatives, we introduce:

z rls “ W rlsarl´1s ` brls P Rnl for l “ 2, 3, ..., L (19)

Fundamental induced relations:
1 arls “ Φpz rlsq,
2 let δ

rls
j “ BC

Bz
rls
j

for 1 ď j ď nl and 2 ď l ď L. (measures the sensitivity

of the loss function to the weighted input for neuron j at layer l), with
C “ fi pw ; ξrisq “ 1

2}yi ´ arLs}22
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Numerical tests - hard-coded NN

Back Propagation - Partial derivatives

Useful operator: the Hadamard product of two vectors u, v P Rn, that is
pu d vqpiq “ uivi .
We obtain the following results that are a consequence of the chain rule:

Lemma 3

We have:

1 δrLs “ Φ
1

pz rLsq d parLs ´ yi q

2 δrls “ Φ
1

pz rlsq d ppW rl`1sqT δrl`1sq for 2 ď l ă L

3 BC

Bb
rls
j

“ δ
rls
j for 2 ď l ď L,

4 BC

BW
rls
jk

“ δ
rls
j a

rl´1s

k for 2 ď l ď L.
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Numerical tests - hard-coded NN

Demo - SGD (FS+DS) vs SAGA vs A-SGD

Test case: n “ 1000 (split into 80-20 % training-validation points),
m “ 10 (size mini-batches), seed = 5000
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Dr. Ir. Valentin Leplat (Skoltech) ISP Seminar - Part 2 24 th Jan. 2023 40 / 47

https://www.dropbox.com/sh/gpz3kjfe14xzvih/AAB50iuisdl-8Ep07W-r83KKa?dl=0
https://codeocean.com/capsule/8174558/tree


Numerical tests - hard-coded NN

Demo - SGD (FS+DS) vs SAGA vs A-SGD

Test case: n “ 1000 (split into 80-20 % training-validation points),
m “ 10 (size mini-batches), seed = 5000

0 50 100 150 200 250 300 350 400 450 500

10
-2

10
-1

10
0

Code Link , Code Ocean Link

Dr. Ir. Valentin Leplat (Skoltech) ISP Seminar - Part 2 24 th Jan. 2023 41 / 47

https://www.dropbox.com/sh/gpz3kjfe14xzvih/AAB50iuisdl-8Ep07W-r83KKa?dl=0
https://codeocean.com/capsule/8174558/tree


Numerical tests - hard-coded NN
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Test case: n “ 1000 (split into 80-20 % training-validation points),
m “ 10 (size mini-batches), seed = 5000
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