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General Introduction

Why ?

History: optimization has always played an important role in data
sciences and in almost all discipline of engineering !

Observation: recent and rapid development of machine learning
methods with very successful real-world applications

Need: fast optimization methods for training high-dimensional
models over large datasets

Dr. Ir. Valentin Leplat (Skoltech) ISP Seminar - Part 1 23 th Jan. 2023 3 / 93



General Introduction

What ?

we introduce state-of-the-art first-order stochastic gradient methods
for solving large-scale optimization problems,

review their theoretical background on convergence rate analysis,

present some applications to observe these powerful methods at work !
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General Introduction

How ?

Evaluation: presentation of a personal project, it could be:

the implementation of stochastic optimization methods for solving
your problem of interest, or a proposed subject.
an original and detailed presentation of research papers in relationship
with stochastic optimization
the construction and the analysis of a new stochastic optimization
method for solving an important problem,

Rules of the game:

1 23th and 24th January - 9am-1pm : lectures (approx. 6 hours)
2 27th January: 20 minutes presentation to the class (slides to be

shared)
3 project can be done alone or in group of two to three.
4 Estimated personal workload: 8-12 hours
5 learn a lot and practice a lot
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Introductory example

A large-scale machine learning example

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10
classes, with 6000 images per class. There are 50000 training images and
10000 test images.

Source Link
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Introductory example

A large-scale machine learning example

Denote the images in the data set by:

txiu
n
i“1 with xi “ px

p1q

i , ¨ ¨ ¨ , x
pdx q

i q
pixels in the image

P Rdx

Denote the labels by:

tyiu
n
i“1 with yi P p1, ¨ ¨ ¨ , 10q P R

We call the set tpx1, y1q, ¨ ¨ ¨ , pxn, ynqu P Rdx ˆ R as the training
points.
For CIFAR-10: n “ 60000 and dx “ 32 ˆ 32 ˆ 3 “ 3072 since every
pixel has three values for RGB colors.
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Introductory example

A large-scale machine learning example

Goal: construct a classifier, i.e., find a prediction function
h : Rdx Ñ p1, ¨ ¨ ¨ , 10q such that hpxi q “ yi for most i (1 ď i ď n).

Source Link
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Formal Optimization Problem Statements

Blanket assumptions

This course: underlying space is the Euclidean space Rd , a particular case
of Hilbert space W of finite dimension d , that is, a Banach space
equipped with:

an inner product x., .y, here we consider the dot product
xx , yy “

řd
i x

piqy piq for x , y P Rd ,

induced norm }.} “
a

x., .y

Notation: x piq denotes the i-th component of x .
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Formal Optimization Problem Statements

Set of assumptions on functions

Through this course:

focus on the minimization of a differentiable function F without
constraints.

important to always keep in mind the set of assumptions made on the
functions, in particular on F (the primal objective function).

The most important assumptions will be highlighted in red when
needed

The derived results (mainly linked to the convergence results of the
algorithms discussed in the present document) are only valid in the
set of assumptions considered (= the paradigm).
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Formal Optimization Problem Statements

Prediction and Loss functions

Assumption: h has a fixed form and is parameterized by a real vector
w P Rd (variables)
Formally: for given hp., .q : Rdx ˆ Rd Ñ Rdy , we consider the family
of prediction functions:

H :“ thp.,wq : w P Rdu (1)

Goal: find h P H that min. the losses incurred from inaccurate
predictions. hpxi ,wq is the model that explains the data using the
parameters w .
How ?: we assume a given real-valued loss function
l : Rdy ˆ Rdy Ñ R such that for a given input-output pair pxi , yi q,
yields the cost

lphpxi ;wq, yi q

where hpxi ;wq and yi are resp. the predicted and true outputs, e.g.,
lpz , yq “ 1

2}z ´ y}22
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Formal Optimization Problem Statements

Expected Risk

Ideally: w chosen to min. the expected loss that could be incurred
from any input-output pair, but how ?
Formal approach: assume that losses are measured w.r.t. probability
distribution Ppx , yq, that is the true relationship between inputs and
outputs.
Assume: input-output space Rdx ˆ Rdy is endowed with
P : Rdx ˆ Rdy Ñ r0, 1s (simultaneously represents the distribution Ppxq of inputs as well as the

conditional probability Ppy |xq of the label y being appropriate for an input x .)

Goal: we want to solve

min
wPRd

Erlphpx ;wq, yqs :“

ż

Rdx ˆRdy

lphpx ;wq, yqdPpx , yq (2)

Further: denote Erlphpx ;wq, yqs “ Rpwq, the expected risk
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Formal Optimization Problem Statements

Empirical Risk

A little snag: that would great to solve Problem (2)... but it is
untenable since not enough info about P, then cannot compute Ers.
In practice: seeks solution that involves an estimate of R.
For supervised learning: we have a set of n P N i.i.d. input-output
samples tpxi , yi quni“1.
Assumption of i.i.d. samples Ñ samples do not depend on the
optimization variable w .
Problem: we want to min. the empirical risk function Rn : Rd Ñ R:

min
wPRd

Rnpwq :“
1

n

n
ÿ

i“1

lphpxi ;wq, yi q (3)
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Formal Optimization Problem Statements

Empirical Risk - remarks

Min. of Rn may be considered as the practical optimization problem
of interest,

We consider the unregularized formulation (3), in practice we
generally want to min.

min
wPRd

1

n

n
ÿ

i“1

lphpxi ;wq, yi q ` gpwq (4)

where gpwq is a regularization/penalty function, used to whether
promote structure for the solution such as sparsity (gpwq “ }w}1) or
limit the so-called over-fitting phenomena (gpwq “ 1

2}w}22).

However: the optimization methods discussed in this course can be
applied readily when a smooth regularization term is included.

and: if time, we will analyze the ”Proximal stochastic gradient”.
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Formal Optimization Problem Statements

Simplified notations

Expressions (2) and (3) show explicit dependence on the loss
function, sample space, sample set, etc.

We will employ a simplified notation Ñ offers some advantages for
generalizing certain algorithmic ideas.

Sample representation: use random seed ξ; realization might be:
1 a single sample px , yq from Rdx ˆ Rdy ,
2 a set of samples tpxi , yi quni“1

Loss function notation: for a given pw , ξq we use f pw ; ξq

Ñ f is the composition l ˝ h
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Formal Optimization Problem Statements

Simplified notations

Expected Risk: expected value of f taken w.r.t. distribution of ξ:

Rpwq “ Erf pw ; ξqs (5)

Empirical Risk: given a set of realizations tξrisu
n
i“1, the loss incurred

for the ith sample:
fi pwq :“ f pw ; ξrisq

Then:

Rnpwq “
1

n

n
ÿ

i“1

fi pwq (6)

”finite sum of functions” form.
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Formal Optimization Problem Statements

Simplified notations

Important remarks

We use ξris to denote the i-th element of a fixed set of realizations of
a random variable ξ,

Later : ξk denotes the k-th element of a sequence of random variables,
each ξk drawn independently according to the distribution P.
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Formal Optimization Problem Statements

Training and validation sets

Sample points: tpx1, y1q, ..., pxn, ynqu P Rd
x ˆ R

Set A Ă t1, ..., nu

Training points: tpxi , yi quiPA

Solve:

min
w

1

|A|

ÿ

iPA
fi pwq

Set B Ă t1, ..., nuzA
Validation points: tpxi , yi quiPB

Check:

min
w

1

|B|

ÿ

iPB
fi pwq
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Formal Optimization Problem Statements

Flat vs Sharp minima

Confusing goal: we solve a problem in the hope to solve another one
(and obtain a good generalization of the model).

From (Keskar et al., 2017).
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Formal Optimization Problem Statements

Example 1

Problems (3) are ubiquitous when solving a machine learning
problem. Let us illustrate this by the example of logistic regression

Name: Maximum likelihood estimator for logistic regression

Context:
1 consider a classification problem denoted by observations tpxi , yi quni“1

with xi P Rd for all i and yi P t´1, 1u.
2 Each observation is supposed to be independent and there exists a

vector w P Rd and w0 P R such that for all i , pyi , xi q is a realization of
the random variable pY ,X q whose law PpX ,Y q satisfies:

PpY “ 1|X ;w ,w0q “
exX ,wy`w0

1 ` exX ,wy`w0

This example can be confusing since we know here a little bit about PpX , Y q, that is the conditional

probability, we are somewhere in between the expected and the empirical risk min., for which the well-known

maximum likelihood estimation method can be used.
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Formal Optimization Problem Statements

Example 1 - objectives

1 Show that for all i , PpY “ yi |xi ;w ,w0q “ 1
1`e´yi pxxi ,wy`w0q

2 Show that the maximum likelihood estimator is:

pw‹,w‹
0 q “ arg min

w ,w0

n
ÿ

i“1

logp1 ` e´yi pxxi ,wy`w0qq (7)

3 Denote f pw ,w0q “ logp1 ` e´yi pxxi ,wy`w0qq, compute ∇f pw ,w0q

Remarks:

In the exercise, we have ξris “ pxi , yi q.
Since we have n observations, it is possible to evaluate the objective
function.
However, when n is large, say millions or billions, this can be tedious
task!!
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First-order methods

Generalities

Problems (6) are large-scale; number of samples n and parameters
dimension d are (very) large.

Most optimization methods designed to solve these problems are
first-order methods.

This means that at each iteration, we only use the information of the
gradient.

In this section: we introduce two fundamental first-order methods.
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First-order methods

Gradient Descent

The most well-known and simple first-order method or a differentiable
function F :

Initialization

Set w0 P W.

Iteration (k ě 0):

1 Choose a step size αk (s.t. F pwk`1q ă F pwkq)

2 Compute
wk`1 Ð wk ´ αk∇F pwkq (8)

Many variants of this method: differ from the step size strategy

The sequence tαku8
k“0 is chosen in advance, ex: αk “ α (constant)

or αk “
α0?
k`1

Full relaxation: αk “ argminαě0 F pwk ´ α∇F pwkqq

Armijo rule
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First-order methods

How to compute the Gradient ?

Using partial derivatives

We know that the gradient is the vector of all the partial derivatives.
Hence, we can compute BF

Bw piq pwq for all i and reconstruct the vector

∇F pwq :“ p BF
Bw p1q pwq, ..., BF

Bw pdq pwqqT .

Example: Consider F pwq “ }Aw ´ b}22 with A P Rmˆn, we can write:

F pwq “

m
ÿ

i“1

p

n
ÿ

j“1

Api ,jqw pjq ´ bpiqq2

and so:
BF

Bw pkq
pwq “ 2

m
ÿ

i“1

Api ,kqp

n
ÿ

j“1

Api ,jqw pjq ´ bpiqq

We recognise the components of the vector: ∇F pwq “ 2AT pAw ´ bq.
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First-order methods

How to compute the Gradient ?

Using the definition

We compute F pw ` hq and try to isolate F pwq, a linear term in h and
a negligible term.

Example: Consider F pwq “ }Aw ´ b}22.

We write:

F pw ` hq “ }Apw ` hq ´ b}22 “ }Aw ´ b}22 ` 2xAw ´ b,Ahy ` }Ah}22

“ F pwq ` 2xAT pAw ´ bq, hy ` oph2q
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First-order methods

How to compute the Gradient ?

Using chain rule Let as an exercise :) (practicing chain rule might be
useful for the projects).
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First-order methods

Convergence of Gradient Descent

Non-convex functions satisfying some conditions such as:

F P C 2,2
M pRdq, that F is 2 times continuously differentiable and

}∇2F pxq ´ ∇2F pyq} ď M}x ´ y} for any x and y

There exists a local min. w‹ at which Hessian satisfies
µId ď ∇2F pw‹q ď LId with 0 ă µ ď L ă 8

w0 close enough to w‹, that is r0 “ }w0 ´ w‹} ă r̄ “
2µ
M

By choosing αk “ 2
µ`L , then Gradient descent method converges linearly

and locally as follows:

}wk ´ w‹} ď
r̄ r0

r̄ ´ r0

ˆ

1 ´
2µ

L ` 3µ

˙k

General non-convex functions: convergence to a stationary point given
that the step sizes are properly chosen.
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First-order methods

Convergence of Gradient Descent

Theorem 1 - Global convergence

Let F be a convex differentiable function that has a minimizer w‹ and
whose gradient is L-Lipschitz continuous, that is F P C 1,1

L pRdq. The
gradient method with constant step size αk “ 1

L satisfies

F pwkq ´ F pw‹q ď
L}w0 ´ w‹}2

2k
(9)

Moreover, if F is µ-strongly convex, then:

F pwkq ´ F pw‹q ď p1 ´
µ

L
qkpF pw0q ´ F pw‹q `

L

2
}w0 ´ w‹}2q

}wk ´ w‹}2 ď p1 ´
µ

L
qkp

2

L
pF pw0q ´ F pw‹qq ` }w0 ´ w‹}2q

(10)

Proof. We will prove more general results in the following of the course.
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First-order methods

Can we do better?

Yes! In fact, much better: The Accelerated Gradient Descent Method

Initialization

Set w0 P W, some α0 P p0, 1q, and set y0 “ w0.

Iteration (k ě 0):

1 Compute F pykq and ∇F pykq. Set wk`1 Ð yk ´ 1
L∇F pykq

2 Compute αk`1 P p0, 1q from Equation

α2
k`1 “ p1 ´ αk`1qα2

k `
µ

L
αk`1 (11)

Set βk “
αk p1´αk q

α2
k`αk`1

and yk`1 Ð wk`1 ` βkpwk`1 ´ wkq
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First-order methods

Accelerated Gradient Descent Method: Convergence

We omit the details in this slide, if requested, the exact forms of
convergence rates can be provided :).

Smooth convex functions: convergence in Op 1
k2 q instead of Op 1

k q !!

Smooth µ-strongly convex: convergence in Opp1 ´

b

µ
L qkq, instead of

Opp1 ´
µ
L qkq.

For non-convex: need to use restart to guarantee convergence.

This is a significant acceleration, and it is optimal in the sense that no
other first-order method can guarantee a faster convergence rate!
See (Y.Nesterov,2018), section 2.2 (”Optimal Methods”) for more details.
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First-order methods

Accelerated Gradient Method: Convergence

Example: µ “ 1, L “ 10: from 0.6838 vs 0.9 !

0 100 200 300 400

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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First-order methods

Accelerated Gradient Descent Method: Convergence

Test case: Given A P Rnˆn and b P Rn, we want to solve:
minw 1{2}Aw ´ b}22. Code Link , Code Ocean Link

0 200 400 600 800 1000 1200
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-6

10
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10
0
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4
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Stochastic vs Batch Opti. methods

Context

Consider Empirical risk minimization Problems (recalled here-under):

min
w

F pwq :“
1

n

n
ÿ

i“1

fi pwq

Note: later discussion will focus on the performance of such
algorithms when considering the true measure of interest, the
expected risk.

We introduce two categories of opti. methods for machine learning:
1 Stochastic: the prototypical method is the so-called Stochastic

Gradient Descent (SGD)
2 Batch: include Gradient Descent (GD) (often referred in ML

community to as batch gradient or full gradient) method, the AGD,
conjugate gradient, quasi-Newton and inexact Newton methods.
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Stochastic vs Batch Opti. methods

Stochastic Gradient Descent - Algorithm

Initialization

Set w0 P W.

Iteration (k ě 0):

1 Choose ik „ Upt1, ¨ ¨ ¨ , nuq (uniform dist.)

2 Choose a step size αk ą 0

3 Set
wk`1 Ð wk ´ αk∇fik pwkq (12)

Remarks:

The index ik (corresponding to the seed ξrik s, i.e., the sample pair
pxik , yik q) is chosen randomly from t1, ¨ ¨ ¨ , nu.

fik pwkq :“ f pwk ; ξrik sq

if fik pwq is not differentiable Ñ use a subgradient
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Stochastic vs Batch Opti. methods

Stochastic Gradient Descent - Insights

Each iteration is very cheap; the computation of the gradient
∇fik pwkq corresponding to one sample.

Unlike GD (deterministic process:)): twku8
k“0 is a stochastic process

(driven by the random sequence tiku8
k“0 )

´∇fik pwkq might not be one descent from wk ; does not necessarily
yield to a negative directional derivative for F from wk

But: if it is a descent direction in expectation
Ñ sequence twku8

k“0 can be guided toward a minimizer of F .
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Stochastic vs Batch Opti. methods

Stochastic Gradient Descent - Challenges

the step size (a.k.a. learning rate) is difficult to tune since we cannot
rely on monotonicity (and the method is very sensitive to this choice),

it is difficult to obtain high accuracy solutions (the methods oscillates
when getting close to a locally optimal solution) – in most practical
problems, this is not an issue because it is not necessary to have high
accuracy solutions (because the data is very noisy anyway).

In the next section,

we study the convergence of SGD; we will make ”appear” these
challenges and we will discuss leads to mitigate them.

The step size sequence tαku8
k“1 will be central, in particular the use

of a diminishing step size sequence .
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Stochastic vs Batch Opti. methods

Batch approaches

For the ML community: a batch approach is natural and well-known
idea,

The simplest method for this class of methods: the GD (also referred
to as batch gradient, or full gradient)

For empirical risk min, iterations of GD:

wk`1 Ð wk ´
αk

n

n
ÿ

i“1

∇fi pwkq (13)

Even if this more expensive than SGD (roughly n times more
expensive than SGD): one may expect that a better ”step” is
obtained by using all the samples...

Advantage: the structure of the empirical risk Ñ benefit from
parallelization !
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Stochastic vs Batch Opti. methods

Batch approaches

Stochastic and batch approaches offer different trade-offs in terms of:
1 per-iteration costs (computational costs),
2 per-iteration improvements (rates of convergence)

in min. empirical risk

We will look deeper into this trade off in the remaining slides of this
section.

To ease the discussion: we will consider the GD (full gradient) as the
batch approach.

Different aspects or motivations will be considered to compare them.

Moreover, a deeper look into their abilities to guarantee improvement
in the underlying expected risk R.
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Stochastic vs Batch Opti. methods

GD vs SGD: intuitive motivations

Intuitively: SGD employs information more efficiently

Reasons: given a training set S which is ten copies of a set Ssub

1 A minimizer of empirical risk for S is given by mnimizer for Ssub

2 Min. Rn over S with GD: each iteration 10 times more expensive than
if one had only one copy of Ssub,

3 SGD performs the same computations in both scenarios: choosing
elements from Ssub with the same probabilities.

Ok... in reality: training sets usually are not like that...

but: in many large-scale applications, data does involve a good deal
of (approximate) redundancy.
Ñ using all the data is inefficient.
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Stochastic vs Batch Opti. methods

GD vs SGD: theoretical motivations

One can also cite theoretical arguments for a preference for SGD over
a batch approach.

Let us now give a preview of these arguments, which are studied in
more depth and further detail later.

Need to summarize this now before we speak about ”practical”
motivations.

The rates of convergence summarized
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Stochastic vs Batch Opti. methods

GD vs SGD: theoretical motivations

For smooth and µ-strongly convex functions

Fixed step size: αk “ α for all k , small enough:

ErF pwkq ´ F ‹s ď C ` Opρkq

for some constant C and ρ ă 1 that is a function on the conditioning
L
µ of F , the second moment of ∇fi pwq and the choice for step size.

Diminishing step size: αk “
β

γ`k for appropriate β and γ ą 0:

ErF pwkq ´ F ‹s ď Op
1

k
q

For convex and general non-convex functions, we will see later.
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Stochastic vs Batch Opti. methods

GD vs SGD: practical motivation

In (very) brief, for the smooth and µ-strongly convex case:

GD has linear convergence rate Opp1 ´
µ
L qkq, while

SGD (diminishing step size) has sublinear convergence rate Op 1
k q.

Why choose SGD ? Ñ to achieve an ϵ-accuracy error:

GD requires Oplogp1ϵ qq iterations,

SGD requires Op1ϵ q iterations.

Hence, for a empirical risk min. problem:

GD requires Opn logp1ϵ qq operations,

SGD requires Op1ϵ q operations.

If n is large and ϵ is not too small, SGD is superior to GD!!
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Stochastic vs Batch Opti. methods

GD vs SGD: practical motivation
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Example: n “ 106, ϵ “ 10´4: n logp1ϵ q “ 4.106 vs 1
ϵ “ 104.
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Stochastic vs Batch Opti. methods

GD vs SGD: showcase

Setup: Given A P Rdˆn, a set of samples yi P Rd with 1 ď i ď n, we want
to solve:

min
wPRd

F pwq :“
1

n

n
ÿ

i“1

}Aw ´ yi}
2
2

with:

d “ 2 (to ease visualisations) and n “ 8,

w‹
i the minimzer of each quadratic, and w‹ the global minimizer of

F pwq.

We compare four methods: GD, AGD, SGD with constant step size and
SGD with diminishing step size (SGD-DS).
Demo:

Code Link ,

Online - Code ocean Link
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Stochastic vs Batch Opti. methods

GD vs SGD: showcase results
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Figure: Benchmark for tackling sum of quadratic forms

Remark: not a fair comparison: SGD and SGD-DS are 8 times cheaper.
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Stochastic vs Batch Opti. methods

GD vs SGD: showcase results
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Figure: Benchmark for tackling sum of quadratic forms

Remark: 1 Epoch = 1 gradient computation of a single fi .
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Stochastic vs Batch Opti. methods

GD vs SGD: showcase results

Observation for SGD: fast initial improvement achieved, followed by a
drastic slow down.
Why ?: the notion of region of confusion.

Figure: illustration to motivate the fast initial behavior of the SGD method for
min. empirical risk, where each fi is a convex quadratic.
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Stochastic vs Batch Opti. methods

GD vs SGD: Region of confusion

Insights:

At w1 ăă ´1: SGD will move right, that is towards w‹,

As soon as the current iterate is at ”leftmost” quadratic: it is likely
(not certain) that SGD will move to the right,

As iterates near w‹: SGD enters a region of confusion: in which
significant chance that a step will not move towards w‹ Ñ progress
slow significantly.

In next section: employing a sequence of diminishing step sizes ensure
convergence by overcoming oscillatory behavior of the algo, see
previous showcase for an illustration.
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Theoretical analysis of SGD
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Theoretical analysis of SGD

Our Menu

Provide insights into the behavior of an SGD method by establishing :

1 its convergence properties,
2 worst-case iteration complexity bounds.

We gave a preview earlier, but now we prove it.

F 1 is µ-strongly convex function.
Ñ possible to establish a global rate of convergence to the optimal
function value F ‹.

Between dishes: a small demo on strongly convex case, and notion
of mini-batch SGD

Main dish: analyses of SGD for generic non-convex functions.

Desserts: lower-complexity bound and some comments, (F convex
function in Part 3).

1: F can be either the expected risk or the empirical risk, i.e. Fpwq “ Rpwq “ Erf pw ; ξqs or

Fpwq “ Rnpwq “ 1
n

řn
i“1 fi pwq.
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Theoretical analysis of SGD

How come we deal with both risks ?

Our analyses apply equally to both objectives; the only difference lies in
the way that one picks the stochastic gradient estimates in the method:

Way 1: picking samples uniformly from a finite training set, replacing
them in the set for each iteration Ñ sampling from a discrete uniform
distribution.
Ñ SGD here optimizes F pwq “ Rnpwq.

Way 2: picking samples in each iteration according to the
distribution P
Ñ SGD optimizes F pwq “ Rpwq.
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Theoretical analysis of SGD

Generalized Stochastic Gradient Descent - Algorithm

Initialization

Set w1 P W.

Iteration (k ě 1):

1 Generate a realization of the random variable ξk
2 Compute a stochastic vector ∇f pwk ; ξkq

3 Choose a step size αk ą 0

4 Set
wk`1 Ð wk ´ αk∇f pwk ; ξkq (14)

Three implicit mechanisms:
1 generation of a realization of a random variable ξk (tξku8

k“1

represents a sequence of jointly independent random variables)
2 computation of a stochastic vector,
3 computation of the step size αk

Dr. Ir. Valentin Leplat (Skoltech) ISP Seminar - Part 1 23 th Jan. 2023 55 / 93



Theoretical analysis of SGD

Two fundamental Lemmas

Convergence results for SGD based on assumption of smoothness of the
objective function:

Assumption 1

Function F is differentiable and has L-Lipschitz continuous gradients:

}∇F pwq ´ ∇F pw̄q} ď L}w ´ w̄} @w , w̄ P Wp“ Rdq (15)

Meaning: gradient of F does not change arbitrarily quickly w.r.t. w
Consequences (not proved):

1

F pwq ď F pw̄q ` x∇F pw̄q,w ´ w̄y `
L

2
}w ´ w̄}2 @w , w̄ P Wp“ Rdq

(16)
2 If F cont. twice diff., the Hessian matrix satisfies: }∇2F pwq} ď L for

all w .
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Theoretical analysis of SGD

Two fundamental Lemmas - Important notes

1 later we use Eξk r.s: the expected value taken w.r.t. the distribution of
the random variable ξk given wk .
Since wk`1 :“ wk ´ αk∇f pwk ; ξkq (depends on ξk)
Ñ Eξk rF pwk`1qs is a meaningful quantity.

2 We will to introduce the notion of total expectation to be able to
derive rates of convergence as a function of iteration counter k in the
theorems later. (will be more clear during the demos)
Formally: although the variables of the sequence tξku8

k“1 are
statistically independent, it is not the case for sequence twku8

k“1:
Example: wk is completely determined by the realizations of
tξ1, ..., ξk´1u

Ñ makes sense to use a total expectation: an expected value taken
w.r.t. to the joint distribution of all random variables, and defined as:

ErF pwkqs :“ Eξ1 ...Eξk´1
rF pwkqs (17)
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Theoretical analysis of SGD

Two fundamental Lemmas

Lemma 1

If Assumption 1 is satisfied, the iterates generated by SGD satisfy:

Eξk rF pwk`1qs ´ F pwkq ď ´ αkx∇F pwkq,Eξk r∇f pwk ; ξkqsy`

α2
kL

2
Eξk r}∇f pwk ; ξkq}2s

(18)

Proof: on the board :).
Meaning: Regardless on how SGD arrived in wk , the expected decrease in
the obj. fun. yielded by the k-step is bounded above by:

1 the expected directional derivative of F at wk along ´∇f pwk ; ξkq,
2 the ”second-moment” of ∇f pwk ; ξkq (more accurately, the trace of

covariance matrix centered at zero).

Q: What happens if ∇f pwk ; ξkq is an unbiased estimator of ∇F pwkq ?
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Theoretical analysis of SGD

Two fundamental Lemmas

As we will see, SGD is guaranteed to converge as soon as the RHS of (18)
is bounded above by a deterministic quantity that asymptotically ensures
sufficient decrease in F .

Assumption 2

1 twku8
k“1 P W s.t. set W is opened and minkpF pwkqq “ Finf ą ´8

(bounded below).
2 There exists µG ě µ ą 0 s.t. for all k :

x∇F pwkq,Eξk r∇f pwk ; ξkqsy ě µ}∇F pwkq}2 (small angle)
}Eξk r∇f pwk ; ξkqs} ď µG }∇F pwkq} (bounded norm of stoch. vectors, «

norm of gradient)

3 There exists M,Mv ě 0 s.t.:

Vξk r∇f pwk ; ξkqs “ Eξk r}∇f pwk ; ξkq}2s ´ }Eξk r∇f pwk ; ξkqs}2

ď M ` Mv }∇F pwkq}2
(19)
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Theoretical analysis of SGD

Two fundamental Lemmas

Insights on Assumption 2:

Q: What happens if ∇f pwk ; ξkq is an unbiased estimator of
∇F pwkq ?
A: Assumption 2 holds directly with µ “ µG “ 1

Warning ! : µ is not a strongly convexity parameter here.

Useful combination: Combining inequalities of Assumption 2, we
have:

Eξk r}∇f pwk ; ξkq}2s ď M ` MG }∇F pwkq}2 (20)

with MG :“ Mv ` µ2
G ě µ2 ą 0.
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Theoretical analysis of SGD

Two fundamental Lemmas

Lemma 2

If Assumptions 1 and 2 are satisfied, the iterates generated by SGD satisfy:

Eξk rF pwk`1qs ´ F pwkq ď ´ pµ ´
1

2
αkLMG qαk}∇F pwkq}2 `

α2
kLM

2
(21)

Proof: Simply combine Lemma 1 et equation (20).
Insights:

1 RHS of (21) is a pure deterministic quantity,
2 first-term of RHS of (21) decreases „ norm of the gradient,
3 second-term of RHS of (21) could be large to allow F to increase,
4 Challenge: how to balance efficiently those two terms ?
5 Q: is convexity required here ?
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Theoretical analysis of SGD

SGD for strongly convex functions

Why strongly convex functions ?

1 Strongly convex case is important since minimizer is unique, we may
have convergence rates w.r.t. distance of wk to the minimizer w‹

with F ‹ “ F pw‹q

2 covers important ML models, such as : ”logistic regression” with
regularization (tip: convex model + strongly convex reg. = strongly
convex model)

3 there exists a variety of situations in which the objective function is
not globally (strongly) convex, but is so in the neighborhood of local
minimizers, meaning that our results can represent the behavior of the
algorithm in such regions of the search space.
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Theoretical analysis of SGD

SGD for strongly convex functions

Assumption 3

Given 0 ă c ď L ă 8, a real valued differentiable Function F is c-strongly
convex function if

F pwq ě F pw̄q ` x∇F pw̄q,w ´ w̄y `
c

2
}w ´ w̄}2 @w , w̄ P Wp“ Rdq (22)

Meaning: function not too flat, possible to lower-bound F by a quadratic
Useful inequality:

2cpF pwq ´ F ‹q ď }∇F pwq}2 @w P Rd (23)

Tip: compute the minimizer of RHS of (22).
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Theoretical analysis of SGD

SGD for strongly convex functions - fixed αk

Fixed step size (but not too large:))

Theorem 2

Under assumptions 1, 2 and 3, suppose SGD is run with a fixed step size
αk “ α, for all k satisfying:

0 ă α ď
µ

LMG
(24)

Then the expected optimality gap satisfies:

ErF pwkq ´ F ‹s ď
αLM

2cµ
` p1 ´ αcµqk´1pF pw1q ´ F ‹ ´

αLM

2cµ
q

kÑ8
ÝÝÝÑ

αLM

2cµ

(25)

Proof: on the board (start with Lemma 2, then use limit on α, then use
(23)).
Dr. Ir. Valentin Leplat (Skoltech) ISP Seminar - Part 1 23 th Jan. 2023 64 / 93



Theoretical analysis of SGD

SGD for strongly convex functions - fixed αk

Remarks:

if Er∇f pwk ; ξkqs “ ∇F pwkq, then µ “ µG “ 1. Given
MG :“ Mv ` µ2

G ě µ2, we may assume Mv “ 0 and then MG “ 1.
Ñ α ď 1

L (a classical step size choice)
If there is no noise, i.e. M “ 0, then one could obtain linear conv.
rate to the optimal value.
if M ą 0: expected objective values conv. lin. to a neighborhood of
the opti. value, after the noise in the gradient estimate prevents
further progress.
Select a smaller stepsize worsens the contraction rate (p1 ´ αcµq Õ),
but allows to arrive closer to opt. values (αLM2cµ Œ)

Ñ let us consider varying step sizes (deterministic).
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Theoretical analysis of SGD

SGD for strongly convex functions - diminishing αk

Theorem 3

Under assumptions 1, 2 and 3, suppose SGD is run with step sizes αk , for
all k satisfying:

αk “
β

γ ` k
, for β ą

1

cµ
and γ ą 0 s.t. α1 ď

µ

LMG
(26)

Then the expected optimality gap satisfies:

ErF pwkq ´ F ‹s ď
ν

γ ` k
„ Op

1

k
q (27)

where ν “ maxt
β2LM

2pβcµ´1q
, pγ ` 1qpF pw1q ´ F ‹qu

Proof: on the board.
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Theoretical analysis of SGD

SGD for strongly convex functions - diminishing αk

Notes:

1 Role of Strong Convexity: crucial role played by the strong convexity
parameter c ą 0, the positivity of which is needed to argue the
contraction of the expected optimality gap.

2 Role of the Initial Point: determines the initial optimality gap:
pF pw1q ´ F ‹q. For diminishing step size SGD, for instance, the gap
appears prominently in the second term defining ν.
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Theoretical analysis of SGD

SGD for strongly convex functions - demo

Test case: Let us consider our first example; ”Maximum likelihood
estimator for logistic regression” but with a regularization
(differentiable)
For simplicity, we drop variable w0

Data generation: n data points ξris “ pxi , yi q where xi P R100 (input
feature vector) and yi P t´1, 1u (class label).

1 xi independently generated from a Gaussian distribution with zero
mean and symmetric covariance, in particular:

Ppxi q “ N p0, 20I q (28)

2 For each xi , the class label yi was generated by a logistic regression
model, as follows:

Ppyi |xi ;wq “
1

1 ` e´yixw ,xiy
(29)

where we selected w “ 1
2 r1, ..., 1sT P R100
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Theoretical analysis of SGD

SGD for strongly convex functions - demo

Problem: Pretending not to know the value of w that generated the
data, our objective is to fit a regularized logistic regression model to
the generated data, i.e. to minimize the following objective function:

F pwq “
1

n

n
ÿ

i“1

log
´

1 ` e´yi xw ,xi y
¯

`
λ

2
}w}2 (30)

For our numerical experiments: λ “ 0.1.
Remark: it can be shown that F pwq from (30) has
Lipschitz-continuous gradients and is λ-strongly convex, therefore it
has a unique global minimum. However, no closed-from solution for
finding the global minimum exists, therefore one needs to resort to
numeric optimization instead.

Demo - Colab
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Theoretical analysis of SGD

SGD for strongly convex functions - demo

Instance: n “ 500, α “ 1
L for GD, and α “

µ
LMG

SGD (FS) and αk “
β

γ`k

with β “ 1
cµ ` 1 and γ “ 500 for SGD (DS).

Figure: Benchmark for tackling regularized logistic regression with Maximum
likelihood approach (to build F pwq)
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Theoretical analysis of SGD

SGD for strongly convex functions - demo

Instance: n “ 500, α “ 5
L for GD, and α “

5µ
LMG

SGD (FS) and αk “
β

γ`k

with β “ 1
cµ ` 1 and γ “ 500 for SGD (DS).

Figure: Benchmark for tackling regularized logistic regression with Maximum
likelihood approach (to build F pwq)
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Theoretical analysis of SGD

SGD for strongly convex functions - demo

Instance: n “ 500, α “ 50
L for GD, and α “

µ
LMG

SGD (FS) and

αk “
β

γ`k with β “ 1
cµ ` 1 and γ “ 10 for SGD (DS).

Figure: Benchmark for tackling regularized logistic regression with Maximum
likelihood approach (to build F pwq)
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Theoretical analysis of SGD

Mini-Batch Versions of Stochastic Algorithms

Main principle:

Stochastic algorithms can be easily modified to work on mini-batches
instead of individual functions.
a mini-batch is a subset of functions fi of some predetermined fixed
size m ă n.
For simplicity: consider the case of min. of the empirical risk and the
algorithm SGD. (rationale can be extended to any stochastic methods
!)
In every stochastic update, instead of choosing a single gradient
∇fik pwkq, minibatch SGD consists of randomly selecting a subset Sk

(|Sk | “ m) of the sample indices, the following gradient is used in the
update of wk

∇B f pwkq “
1

m

ÿ

jPSk

∇fjpwkq (31)
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Theoretical analysis of SGD

Mini-Batch Versions of Stochastic Algorithms

First remarks:

if m “ 1, we go back to the original SGD.

for m ą 1: easy to show that ∇B f pwkq is a more reliable estimate of
the full gradient that any single gradient.

However: by the time a mini-batch algorithm makes a single update,
the original algorithm would have made m updates that, in
expectation, move towards the right direction.

So: not obvious whether large mini-batches are advantageous. In
fact, (Hinton, 2012) refers to the use of large mini-batches with SGD
as “a serious mistake”.

then why ?: significant advantage in using mini-batches: computing
the m gradients can be easily vectorized or parallelized.
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Theoretical analysis of SGD

Mini-Batch Versions of Stochastic Algorithms

More theoretical justification: suppose m ! n,

variance of the direction is reduced by a factor of 1
m (more details in

ISP - Part 2 lecture).
Hence: constants M and Mv from Assumption 3 are divided by m.
Again: It is natural to ask whether this reduction in the variance pays
for the higher per-iteration cost.
consider a sufficiently small constant stepsize α ą 0, Theorem 2 for
mini-batch SGD leads to:

ErF pwkq ´ F ‹s ď
αLM

2cµm
` p1 ´ αcµqk´1pF pw1q ´ F ‹ ´

αLM

2cµm
q

But: using SGD with step size α{m leads to:

ErF pwkq ´ F ‹s ď
αLM

2cµm
` p1 ´

αcµ

m
qk´1pF pw1q ´ F ‹ ´

αLM

2cµm
q

worst contraction rate... in the end, both comparable (except if gpu’s
used :))
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Theoretical analysis of SGD

Back to Flat vs Sharp minima

From (Keskar et al., 2017), main observations:

1 large-batch methods tend to converge to sharp minimizers of the
training function, tend to generalize less well.

2 small-batch methods converge to flat minimizers
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Theoretical analysis of SGD

SGD for general objectives

Many important ML models lead to nonconvex optimization
problems,

analyzing SGD in such setting is much more challenging, many local
minima and other stationary points !

We present two results as before: for fixed and for diminishing step
sizes.

Recall for min. of smooth functions without constraints:

Def 1

A point w‹ is stationary point of F if ∇F pw‹q “ 0.
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Theoretical analysis of SGD

SGD for gen. functions - fixed αk

Theorem 4 (Proof on the board)

Under assumptions 1 and 2 suppose SGD is run with a fixed step size
αk “ α, for all k satisfying 0 ă α ď

µ
LMG

. Then the expected sum of
squares and averaged-squared gradients of F satisfy for all K iterations
done:

Er

K
ÿ

k“1

}∇F pwkq}2s ď
KαLM

µ
`

2pF pw1q ´ Finf q

µα
(32)

and therefore:

Er
1

K

K
ÿ

k“1

} ∇F pwkq}2s ď
αLM

µ
`

2pF pw1q ´ Finf q

µαK

KÑ8
ÝÝÝÝÑ

αLM

µ

(33)
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Theoretical analysis of SGD

SGD for gen. functions - fixed αk

Insights:

If M “ 0, Equation (32) captures a classical result for the full
gradient method applied to nonconvex functions:
the sum of squared gradients remains finite
Hence: series

ř8
k“1 ak with ak “ }∇F pwkq} is convergent,

necessarily the sequel t}∇F pwkq}u8
k“1 converges towards zero.

Unlike strongly convex case, we cannot bound the expected optimality
gap.
The asymptotic result from Equation (33) illustrates that noise in the
gradients (M ą 0) inhibits further progress.
The average norm of the gradients can be made arbitrarily small by
selecting a small stepsize, but doing so reduces the speed at which
the norm of the gradient approaches its limiting distribution.
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Theoretical analysis of SGD

SGD for gen. functions - diminishing αk

From now: SGD method is applied to a nonconvex objective with a
decreasing sequence of stepsizes satisfying two central conditions:

1
ř8

k“1 αk “ 8

2
ř8

k“1 α
2
k ă 8 (finite value)
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Theoretical analysis of SGD

SGD for gen. functions - diminishing αk

Theorem 5 (Proof on the board)

Under assumptions 1 and 2 suppose SGD is run with step sizes satisfying
the previous conditions. Then, with AK :“

řK
k“1 αk ,

lim
KÑ8

Er

K
ÿ

k“1

αk}∇F pwkq}2s ă 8 (34)

and therefore:

Er
1

AK

K
ÿ

k“1

αk}∇F pwkq}2s
KÑ8
ÝÝÝÝÑ 0 (35)

Dr. Ir. Valentin Leplat (Skoltech) ISP Seminar - Part 1 23 th Jan. 2023 81 / 93



Theoretical analysis of SGD

SGD for gen. functions - diminishing αk

Corollary 1

Under assumptions of Theorem 5, we have:

lim
kÑ8

inf Er}∇F pwkq}2s “ 0 (36)

Q: Corollary 1 is a direct consequence of Theorem 5, why ?

Corollary 2

Under assumptions of Theorem 5, let kpK q be a random index chosen with
probabilities proportional to tαkuKk“1. Then,

}∇F pwkpKqq} Ñ 0, (37)

in probability as T Ñ 8
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Theoretical analysis of SGD

SGD for gen. functions - diminishing αk

Corollary 3

Under assumptions of Theorem 5 and the assumptions of F is twice
differentiable, and the mapping w Ñ }∇F pwq}2 has Lipschitz-continuous
derivatives, we have:

lim
kÑ8

Er}∇F pwkq}2s “ 0 (38)
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Concluding comments on the SGD analysis

A lower bound:

when only gradient estimates are available through a noisy oracle has
been studied, see (Agarwal et al., 2012)

Take-home message when minimizing a strongly convex function,
no algorithm that performs k calls to the oracle can guarantee
accuracy better than Op 1

k q

Ok.. as we have seen, SGD with decreasing step sizes achieves this
lower bound up to constant factors.

This analysis applies for the optimization of both expected risk and
empirical risk.
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Theoretical analysis of SGD

Concluding comments on the SGD analysis

Alternatives with Faster Convergence.:

(Agarwal et al., 2012) establish lower complexity bounds for
optimization algorithms that only access information about the
objective function through noisy estimates of F pwkq and ∇F pwkq at
each k iteration.

The bounds apply, e.g., when SGD is employed to minimize the
expected risk R using gradient estimates evaluated on samples drawn
from the distribution P.

However: an algorithm that optimizes the empirical risk Rn has
access to an additional piece of information: it knows when a gradient
estimate is evaluated on a training example that has already been
visited during previous iterations.

Benefit: gradient aggregation methods (see Part 2) enjoy linear
rates.
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Project proposals

Proposal 1 - join the competition

In this proposal, you have to solve:

min
W ,b

RnpW , bq :“
1

n

n
ÿ

i“1

}ΦpWxi ` bq ´ yi}
2
2 ` gpW q

where

xi P R43586 is a document represented by a vector of word counts, and
yi P t0, 1ur is the binary vector corresponding to the class it belongs
to, where 1 ď i ď 13960.

Φpzq is a (component-wise) non-linear function, e.g. maxp0, zq or
1

1`e´z .

Join the competition Link

This proposal is deeply inspired by (Gillis, 2021).
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Project proposals

Proposal 2 - join the competition

In this proposal, you have to solve:

min
W ,b

1

n

n
ÿ

i“1

˜

log

˜

10
ÿ

j“1

erWxi`bs
pjq

¸

´

10
ÿ

j“1

y
pjq
i erWxi`bs

pjq

¸

` gpW q

where:

xi P R784 is a vectorized gray image of a digit between 0 and 9 from
(classes from 1 to 10) MNSIT database , and yi P t0, 1u10 is the binary
vector corresponding to the class it belongs to, where 1 ď i ď 60000.

gpW q is a regularization function, say gpW q “ λ
2 }W }22.

Join the competition Link
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http://yann.lecun.com/exdb/mnist/
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Proposal 3 - (deep) paper presentation

Here, you will have to choose, for instance, one of the following papers
and : (1) prepare a detailed and comprehensive presentation, and (2)
implement one of the algorithms presented on a simple case of interest
for you.

Paper 1 : S. Vaswani et al. Painless Stochastic Gradient:
Interpolation, Line-Search, and Convergence Rates. 2019

Paper 2 : P. Richtarik et al. Stochastic reformulations of linear
systems: algorithms and convergence theory. 2018

Paper 3 : Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of
stochastic gradient methods. 2017.

Paper 4 : Gower et al. Stochastic quasi-gradient methods: variance
reduction via Jacobian sketching. 2017.

You may also select one paper of your choice, to be approved by the
instructor (me :), V.Leplat@skoltech.ru).
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https://proceedings.neurips.cc/paper/2019/file/2557911c1bf75c2b643afb4ecbfc8ec2-Paper.pdf
https://epubs.siam.org/doi/pdf/10.1137/18M1179249
https://www.jmlr.org/papers/volume18/16-410/16-410.pdf
https://arxiv.org/abs/1805.02632
mailto:me@example.com
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