(@) AIRI x g

Optimisation methods for training large
models

Aleksandr Katrutsa
Skoltech, AlIRI

Plan Problem statement

Basic optimisers

What is changed with large models?

Main approaches

Summary

Problem statement

What problem we are going to solve?

. Given dataset X = {x;}>’ |

» According to the target task we have the corresponding loss function

| &
Liw|X) = ~ Z Lw|x;), L(w)=L(w|x)
=1

l
and the model f(w, x;) which

« The main problem is

is simulated by DNN

w* = argmin L(w | X)
w

Y% " ';;l (/) >
"I'I”’III TR
" QOIS NI
,';\\\\\3\\§§§\s:.’o":,’llllllllm{;;o:;:,. SR
‘QQQQQ‘\\\\\\\\\""] R0
\§\\\:‘Q’¢£}“\\\\‘x YY) 'I A,__I!I/l,!,ll,"l"l, /:Z‘Z’,”-’:’E’///[w
=)% ”’/7"1;/’%”//

ST I

ST Vool N,
XA X D /
R

<

S

Q

Source is here

o (@) NIRI x g

https://arxiv.org/pdf/1805.04829.pdf

Main features of the problem

Non-convexity: multiple local minima of different quality

Overfitting is a problem although DNNs are typically overparametrized
Generalisation is important property of the final model

Adversarial attacks are also a challenge in model training

DNNSs require massive parallel computations to treat the sufficient
amount of data

NIRI x g

Features of the problem statement:
*Non-convexity

*Non-smoothness

Generalisation

Robustness w.r.t. adversarial attacks
-Limited of the computational and
storage resources

02

Basic optimisation methods

What do we want from optimisers?

- SGD
— Momentum
» Train loss minimisation . Ny
- High generalisation, i.e. test loss minimisation R
simultaneously .
- Fast convergence | 7% -
* No special tuning of hyperparameters f 18
- Adversarial robustness to attacks of the /00
resulting model . '
- Low consumption of the additional memory
Source is

; NIRI x g

https://theaisummer.com/optimization/

Stochastic gradient descent

- Gradient estimation from batch B, < —

1 -
LIQ(W) — |B | Z Ll.’(w) Mini?num Gradient Descent Momentum
k

- SGD: Wy = w,—ali(w),a >0
- SGD + Momentum: wy | = w, — al,(w) + f(w, — wi_;)
. Adaptive learning rate: @ = const — o, = s(-)

IEB .
k Source is

What we can already observe?
. Batch size | B, | affects the noise in gradient estimate

« Momentum methods require storage additional vectors
 Learning rate tuning can help

: NIRI x g

https://www.andreaperlato.com/aipost/gradient-descent-with-momentum/

Some theory about such methods

Theorem
Let f be convex, L-smooth function. Then if SGD generates

directions hy such that Var(h) < o? and a; < % then

‘< %o —x*||5 =~ axo?

E[f(Xg)] — f* < ok + 5

. 2 L * 2\2 | . .
In particular, after k = (o7 ”’;2 xoll2)” iterations if ay =

we get the solution with accuracy 2e¢.

-

* No convergence due to noise term
 Averaging of gradients leads to convergent method - SAG [Schmidt, et al, 2013] -

impractical due to memory limitations
 Only for convex case the theory is well-developed

o (@) NIRI = g

Adaptive learning rate methods

- Adam [Kingma, et al, 2014] is the most representative method
’/hk

\/f)_k+e

Wit1 =W — @

my, = pymy_y + (1 = pPL
A v / /
. V;, = X P Vi = ﬁzvk_l + (1 — 162)(Lk . Lk)

- All operations are elementwise

SGD vs Adam

- Adam stores two vectors of the size of #parameters
« More computations per step

- Learning rate in Adam differs from SGD

NIRI x g

Adam can generalise worse

- It was observed that though Adam converges faster, it gives less
generalisable model

+ Possible explanations
- SGD faster escapes from the local minima
- Adam average leads to lighter gradient noise tails
- Formal proofs are based on SDE interpretation of SGD:
dw, = — L'(w,)dt + ethLt(S), where L, is Levi process

10* 4 103 4, 104 1044

1034 104
103 103 10 103
- - 10? - - - 107 4 -
c c c c c c
3 10?2 S 3 102 310 E 3 102
0 0 0 o o o
O ST O o O 1014 | o
10! 10! 10 10!
10° 4 10° 10° 10° 10° 4 H 10°
0 450 900 0 450 900 0 450 900 0 450 900 0 450 900 0 450 900
Real Gradient Noise Gaussion Noise a-Stable Noise Real Gradient Noise Gaussion Noise a-Stable Noise
(a) ADAM (b) SGD
Source is

=
N

Testing Error

141 Wl |

=
o

(o)

25 50 75 100 125 150 175 200
Epochs

Source is

12

NIRI x g

https://arxiv.org/pdf/1712.07628.pdf
https://arxiv.org/pdf/1712.07628.pdf
https://arxiv.org/pdf/1712.07628.pdf
https://proceedings.neurips.cc/paper/2020/file/f3f27a324736617f20abbf2ffd806f6d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f3f27a324736617f20abbf2ffd806f6d-Paper.pdf

Flat vs sharp local minima

- Generalisation is also affected by the geometry of loss landscape
- Compare different architectures

« Sharpness aware minimisation (SAM) method suggests computing
adversarial direction and updates parameters to avoid

ResNet-56 architecture. Source is

2.0

— Original landscape

—— Negative local entropy : 7 = 0.001
15| ...

Negative local entropy : = 0.00005

107,
05|

0.0

-05

Source is “Entropy-SGD:
biasing gradient descent into
wide valleys”, Pratik
Chaudhari et al J. Stat.
Mech. (2019)

Cifar10
Cifar100
Imagenet 4

Finetuning -

SVHN |
F-MNIST

Noisy Cifar

Error reduction (%)

Wtit
—NVL(wy) /'.+
A SAM
v (wy) \ WMt Wt.+1
)2 - >
Wadf A —NVL(Waav)
>
Source is

https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://arxiv.org/pdf/2010.01412.pdf
https://arxiv.org/pdf/2010.01412.pdf
https://arxiv.org/pdf/2010.01412.pdf

Statistics from

Method

Adam
B Adam: A Method for Stochastic Optimization

SGD
~{ RMSProp

Adafactor
(O Adafactor: Adaptive Learning Rates with Sublinear Memory Cost

LAMB
O Large Batch Optimization for Deep Learning: Training BERT in 76 minutes

SGD with Momentum

"‘(«,r AdaGrad

Year

2014

1951

2013

2018

2019

1999

2011

Papers

8544

1286

316

220

138

133

12

s (@) AR x g

https://paperswithcode.com/

Main features of basic

optimisers

» Adaptive learning rate
» Smoothing of gradient
statistics

03

What is changed with large models?

Large models from the optimisation perspective

- Huge #parameters affects the storage of optimiser state

gPUq
Baseline

« Parameters of the model can be stored in distributed
manner. Remember about ZeRO framework

- The communication between GPUs appears - new factor
in our scheme

Parameters

- Large batch size increases GPU utilisation but affects the
scheduler of other hyperparameters

gPy; [V IVEY Consume d |y,

Q+2+K)«W

2w+ 2y + ¥
Nll

Q+K)*¥
2Y¥ + —

(2+2+K)*¥
N,
Gradients Optimizer States

Source is

NIRI x g

0
I~
P
Qun
@

120GB

31.4GB

16.6GB

1.9GB

https://arxiv.org/pdf/1910.02054.pdf

New factors

*We need more memory: CPU vs
GPU

-Communications between nodes

*Distributed storage of model and
optimiser state

04

Main approaches

Quantisation

- The easy way to reduce memory footprint - decrease the
accuracy of numbers representation

- It affects the property of optimisers
- FP32 is standard format
. , and alternatives

« Even just integers can be used [S. Kim et al, 2021]

« Quantisation is for optimiser state or for parameters

« Extreme case: 1-bit SGD and 1-bit Adam for efficient
communications

fmax

fmin 0
-00—0—90 }

gmin Z

SGD
109 —— Adam
{ 1-bit Adam
1-bit Adam (32-bits)
——— Adam (1-bit Naive)

iy
o
1

-

o "'mw

Training loss

._.
o
o

Vi i

10_33 ‘

0 2M am 6M 8M 10M

Samples

(a) Training loss

gmax

Source is

>
O
©
—
=]
9]
19
©
)]
c
=
0
| SGD
= 40y — Adam
1-bit Adam
30 1-bit Adam (32-bits)

- Adam (1-bit Naive)
200 2M 4M 6M 8M 10M
Samples

(b) Testing accuracy

ResNet-18, CIFAR-10, source is
.;:.::_. YHusepcutet
20 ,\I ? I x Cupuyc

https://towardsdatascience.com/inside-quantization-aware-training-4f91c8837ead
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://cloud.google.com/tpu/docs/bfloat16
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
http://proceedings.mlr.press/v139/tang21a/tang21a.pdf

Adaptive quantisation, 8-bit Adam

« Blockwise quantisation improves optimisers

« Example is

for momentum and Adam

* ldea: adaptively choose the range of values that should

be covered by the quantised numbers

Optimizer Task Data Model Metrict Time Mem saved
32-bit AdamW GLUE Multiple RoBERTa-Large 88.9 - Reference
32-bit AdamW GLUE Multiple RoBERTa-Large 88.6 17h 0.0 GB
32-bit Adafactor GLUE Multiple RoBERTa-Large 88.7 24h 1.3 GB
8-bit AdamW GLUE Multiple RoBERTa-Large 88.7 15h 2.0 GB
32-bit Momentum CLS ImageNet-1k ResNet-50 77.1 - Reference
32-bit Momentum CLS ImageNet-1k ResNet-50 77.1 118h 0.0 GB
8-bit Momentum CLS ImageNet-1k ResNet-50 77.2 116 h 0.1 GB
32-bit Adam MT WMT’14+16 Transformer 29.3 - Reference
32-bit Adam MT WMT’14+16 Transformer 29.0 126h 0.0 GB
32-bit Adafactor MT WMT 14416 Transformer 29.0 127h 0.3 GB
8-bit Adam MT WMT’14+16 Transformer 29.1 115h 1.1GB
32-bit Momentum MoCo v2 ImageNet-1k ResNet-50 67.5 - Reference
32-bit Momentum MoCo v2 ImageNet-1k ResNet-50 67.3 30 days 0.0 GB
8-bit Momentum MoCo v2 ImageNet-1k ResNet-50 67.4 28 days 0.1 GB
32-bit Adam LM Multiple Transformer-1.5B 9.0 308 days 0.0 GB
32-bit Adafactor LM Multiple Transformer-1.5B 8.9 316 days 5.6 GB
8-bit Adam LM Multiple Transformer-1.5B 9.0 297 days 8.5GB
32-bit Adam LM Multiple GPT3-Medium 10.62 795 days 0.0 GB
32-bit Adafactor LM Multiple GPT3-Medium 10.68 816 days 1.5 GB
8-bit Adam LM Multiple GPT3-Medium 10.62 761 days 1.7 GB
32-bit Adam Masked-LM Multiple RoBERTa-Base 3.49 101 days 0.0 GB
32-bit Adafactor Masked-LM Multiple RoBERTa-Base 3.59 112 days 0.7 GB
8-bit Adam Masked-LM Multiple RoBERTa-Base 3.48 94 days 1.1 GB

TMetric: GLUE=Mean Accuracy/Correlation. CLS/MoCo = Accuracy. MT=BLEU. LM=Perplexity.

Exponent: 1e-2

’ Linear t
i e quantization:
o { Indicator bit > 1> - 08
| A
~—
[1]lo][o][1][1][o][0][1]
- 1e2 ¢ 0.6 =-6e-3
Largest finetunable Model (parameters)
GPU size in GB 32-bit Adam 8-bit Adam

6
11
24
24

RoBERTa-base (110M)
MTS5-small (300M)
MTS5-base (580M)
GPT-2-medium (762M)

RoBERTa-large (355M)
MTS5-base (580M)
MT5-large (1.2B)
GPT-2-large (1.5B)

o (@) NI x

YHuBepcutet

Cupuyc

https://arxiv.org/pdf/2110.02861.pdf

Communications costs reduction

* Different methods for compression: algorithmic and network
« PowerSGD: low-rank compression from the power method
Alternative compression methods

Sign

Top-K

Sign + norm

Random
Block random

Zero-Infinity: proper memory and network usage

Output neurons

Compressed gradients

T.‘

Layer gradient

Input neurons

Source is here

Sign

" BN
Sign + Norm

Top K

gl

Random K

e .
n

Random Block Low-rank (ours)

Network

AllGather ReduceScatter

1 x data movement} i}

m (PU“) m (l’U“)
(1/DP) x data movement}
G(o) n 6(1) G(z) ' G(s)

Model States Slow Memory

Layer 0 (CPU + NVMe)
States
@ c2pE ;O] g
Gradients () A LI (I
[Layer 1] AP APHl A& AC

Figure 4: A snapshot of ZeRO-Infinity training a model with two
layers on four data parallel (DP) ranks. Communication for the
backward pass of the first layer is depicted. Partitioned parameters
are moved from slow memory to GPU and then collected to form
the full layer. After gradients are computed, they are aggregated, re-
partitoned, and then offloaded to slow memory. Layers are denoted
with subscripts and DP ranks are denoted with superscripts. For ex-
ample, Péz) is the portion of layer 0’s parameters owned by GPU (2),

Source is here

..:':!. YHuBepcutet
(@) AIRI xR

https://arxiv.org/abs/2104.07857
https://arxiv.org/pdf/1905.13727.pdf

Large batch training: idea

 Increase batch to utilise GPUs better

 This maodification affects the gradient estimate noise

+ As a result some modification of learning rate is needed to preserve learning curve

 Analysis of required transformation is easy with SDE approximation

dw, =

where W, is Wiener process

— L'(w)dt + (aZ(w)2dW,

Train Accuracy Test Accuracy

1.00

0.751 - 0.751 7 .
] 0.50
0.50 SGD ‘ SGD

0.251 —— NGD | 0.25] —— NGD

0 10000 20000 30000 0 10000 20000 30000
Step Step

Source is

2 NIRI x g

https://openreview.net/pdf?id=goEdyJ_nVQI
https://openreview.net/pdf?id=goEdyJ_nVQI

Main recipes
*Quantisation
-Compression
‘Maximum GPUs utility

Summary

 Large models require special optimisation
techniques

» Existing approaches are multi-directional

 Every direction can be further improved
since no theoretical bounds are known

Questions

- What is a proper combination of described
approaches?

* How test them fairly?

* |s it possible to formal prove the described
heuristics?

Artificial Intelligence
Research Institute

airi.net

https://www.youtube.com/c/AIRIInstitute
https://t.me/airi_research_institute
https://t.me/airi_research_institute
https://t.me/airi_research_institute
https://t.me/airi_research_institute
https://t.me/airi_research_institute
https://twitter.com/AIRI_inst
https://ru.linkedin.com/company/artificial-intelligence-research-institute
https://vk.com/airi_institute

