Methods for training large-scale deep learning
models

I[van Oseledets,
Center for Artificial Intelligence Technologies @Skoltech

Skoltech

ooooooooooooooooooooooooooooooooooooooo

Large scale deep learning models

e Standard way to train: stochastic gradient descent

e For many domains, it has been found that larger
models and larger datasets give better performance

e |tincludes: natural language processing (NLP), self-
supervised learning, vision transformers, contrastive
language image pretraining, etc.

The time when you can train a large model on 1
GPU or on several GPUs is quickly going away!

Skoltech

ooooooooooooooooooooooooooooooooooooooo 2

Green Al

126 houses in Denmark

Requires 190 MW*hours, 85
tonnes of CO,.

Or car drive from Moon

Challenges in training

Two challenges:
Computational time

Memory for the model and batch

Skolkovo Institute of Science and Technology 4

GPT-1 -> GPT-2 -> GPT-3

Models are getting bigger!

Input
Embedding

Inputs

Model Name Nparams Mlayers @model Theads @head Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0 x 1074
GPT-3 2.7B 2.7B 32 2560 32 80 1M 1.6 x 10~4
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 10~
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10~

How much (from «Language models are few-shot learners»)?

e Two challenges: computational time and memory for the model

and batch
Fwd-pass Frac of
Total train ~ Total train Flops flops per params active
compute compute Params Iraining tokens per param Mylt for active param for each
Model (PF-days) (flops) (M) (billions) per token bwd pass per token token
T5-Small 2.08E+00 1.80E+20 60 1,000 3 3 1 0.5
T5-Base 7.64E+00 6.60E+20 220 1,000 3 3 1 0.5
T5-Large 2.67E+01 2.31E+21 770 1,000 3 3 1 0.5
T5-3B 1.04E+02 9.00E+21 3,000 1,000 3 3 1 0.5
T5-11B 3.82E+02 3.30E+22 11,000 1,000 3 3 1 0.5
BERT-Base 1.89E+00 1.64E+20 109 250 6 3 2 1.0
BERT-Large 6.16E+00 5.33E+20 355 250 6 3 2 1.0
RoBERTa-Base 1.74E+01 1.50E+21 125 2,000 6 3 2 1.0
RoBERTa-Large 4.93E+01 4.26E+21 355 2,000 6 3 2 1.0
GPT-3 Small 2.60E+00 2.25E+20 125 300 6 3 2 1.0
GPT-3 Medium 7.42E+00 6.41E+20 356 300 6 3 2 1.0
GPT-3 Large 1.58E+01 1.37E+21 760 300 6 3 2 1.0
GPT-3 XL 2.75E+01 2.38E+21 1,320 300 6 3 2 1.0
GPT-32.7B 5.52E+01 4.77E+21 2,650 300 6 3 2 1.0
GPT-3 6.7B 1.39E+02 1.20E+22 6,660 300 6 3 2 1.0
GPT-3 13B 2.68E+02 2.31E+22 12,850 300 6 3 2 1.0
GPT-3 175B 3.64E+03 3.14E+23 174,600 300 6 3 2 1.0

Skoltech

Skolkovo Institute of Science and Technology 6

Some computational costs

e CLIP model: 18 days on 592 V100 GPUs (ResNet
backbone)
12 days on 256 V100 GPUs
e DALLE-E model: 1024 V100 GPU
VIT model: 2500 TPU v3 core-days
e PanGu-alpha model: 2048 Ascend 910 Al
processors ? days.

Skoltech

ooooooooooooooooooooooooooooooooooooooo 7

Recent «world record»: Megatron-LM

44% 4.4

1.7B 2304 24 1.7 1 32 512 137
3.6B 3072 30 3.6 2 64 512 138 44% 8.8
7.5B 4096 36 7.5 4 128 512 142 46% 18.2
18B 6144 40 18.4 8 256 1024 135 43% 34.6
39B 8192 48 39.1 16 512 1536 138 44% 70.8
76B 10240 60 76.1 32 1024 1792 140 45% 143.8
145B 12288 80 145.6 64 1536 2304 148 47% 2271
310B 16384 96 310.1 128 1920 2160 155 50% 297.4
530B 20480 105 529.6 280 2520 2520 163 52% 410.2
1T 25600 128 1008.0 512 3072 3072 163 52% 502.0

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-
megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-

language-model/

Skoltech

Skolkovo Institute of Science and Technology 8

How to train a big model?

We have: the model and the data.

We train using stochastic gradient descent (SGD)
Given a batch x of size B X D

we compute: forward f(x, @), backward V, f(x, 0)

fis a feedforward neural network

Skoltech

ooooooooooooooooooooooooooooooooooooooo 9

What is computed

For a backward pass, we need to store activations!
They consume 0.1 - 10x of the memory of the model
(depending on the batch size)

ao aj a2 ar—2 ar—1
— Fl > F2 e T — FL—l > FL
\\Cﬁo a; as ar-1 \ar
«— | B |~ B |« B3j«— -+ «— By |< Loss

Skolkovo Institute of Science and Technology

Type of parallelism

We need to use multi-node (GPU, Accelerators) system!

e Data parallelism: split the input batch into sub-
batches

e Model parallelism: split the parameters of the
model between different computational nodes

e Pipeline parallelism: minimize communication in
forward & backward passes

e Tensor parallelism: split the feature dimension
between different GPUs

Skoltech

ooooooooooooooooooooooooooooooooooooooo 11

Memory reduction techniques

We can use CPU memory to store things:

e Activation checkpointing: store some activations
in the CPU memory, recompute others (increases
computational time, decreases memory cost)

e Offloading: upload parts of the model weights/
activations to the CPU

Skoltech

ooooooooooooooooooooooooooooooooooooooo 12

Faster computations

Techniques that do not fall into ones above:

e Low-precision computations: use FP16 (or
even less) for computations. Increases
throughput, decreases memory may lead to bad
convergence; low-precision approximation of
(some) activations.

e 1-bit optimizers + PowerSGD: Approximate
gradients (even 1-bit), approximate the block

Skoltech

ooooooooooooooooooooooooooooooooooooooo 13

Data parallelism

The classical approach,
implemented in software, is data
parallelism

Each computational unit holds a
copy of the model, processes its
own batch and aggregates the
gradients

This is equivalent to large batch;
It also requires scatter-gather
operation

81 = Vo f(x1,0)
8 = Vo f(x,,0)
83 = Vo f(x3,0)
8all = 81T 82 1 83

Skoltech

ooooooooooooooooooooooooooooooooooooooo 14

Data parallelism: large-batch training

This is equivalent to large batch;

How can we train with large batch
size without worse convergence?

We need to scale the learning rate
accordingly.

81 = Vo f(x1,0)
8 = Vo f(x,,0)
83 = Vg f(x3,0)
8all = 81T 82 1 83

Skoltech

ooooooooooooooooooooooooooooooooooooooo 15

Large-batch training

This is equivalent to large batch;

We need to scale the learning rate
accordingly.

Theorem 1 ((Ghadimi & Lan, 2013b)). With large batch b = T and using appropriate learning rate,
we have the following for the iterates of SGD:

E[[Vf(za)]?] <O ((f(CL'l) —;(x*))Loo N ||a:,l|) |

You Y. et al. Large batch optimization for deep learning: Training BERT in 76 minutes //arXiv preprint arXiv:1904.00962.

2019.
Skoltech

Skolkovo Institute of Science and Technology 1 6

Large-batch training

This is equivalent to large batch;

For example, for SGD we can have

(i)
xD = x® td’(”x{)”)gt(i)
" lel

You Y. et al. Large batch optimization for deep learning: Training BERT in 76 minutes //arXiv preprint arXiv:1904.00962.

2019.
Skoltech

ooooooooooooooooooooooooooooooooooooooo 17

Large-batch training

This is equivalent to large batch;

LARS and LAMB (ADAM + Layer normalization)

Algorithm 2 L.AMB

Input: z; € RY, learning rate {n;}7_,, parameters
0 < B1, B2 < 1, scaling function ¢, € > 0
Setmo=0,v9 =0

Algorithm 1 LARS fort =1toT do

Draw b samples .S; from P.

Compute g; = @ >ees, Ve, 5¢).

Input: z; € R, learning rate {;}7—,, parameter
0 < B1 < 1, scaling function ¢, € > 0

Setmo =0 mey = Bime_1+ (1 — ﬂl)zgt
fort =1to T do vy = Bove—1 + (1 — B2)gi
Draw b samples S; from P me =me/(1 - Bt)
Compute g; = ﬁ >e,es, VAT, 50) ve = v/ (1 - B%) -
my = Bimi—1 + (1 — B1)(gt + Axt) Compute ratio 7 = —\/ﬁt-i-e
: ; (M i . i i (¥ i i
zih =) - ne 20 @) Dim(® forall i € [A])y =) —me "f%” |<|)> (ri? + Az?)
Il lrg™ +xay ||
end for end for

You Y. et al. Large batch optimization for deep learning: Training BERT in 76 minutes //arXiv preprint arXiv:1904.00962.

2019.
Skoltech

Skolkovo Institute of Science and Technology 1 8

Large-batch training

This is equivalent to large batch;

BERT training on TPUS.

| Solver I batch size | steps | F1 score on dev set | TPUs | Time l
Baseline 512 1000k 90.395 16 81.4h
LAMB 512 1000k 91.752 16 82.8h
LAMB 1k 500k 91.761 32 43.2h
LAMB 2k 250k 91.946 64 21.4h
LAMB 4k 125k 91.137 128 | 693.6m
LAMB 8k 62500 91.263 256 | 390.5m
LAMB 16k 31250 91.345 512 | 200.0m
LAMB 32k 15625 91.475 1024 | 101.2m

| LAMB | 64k/32k | 8599 | 90.584 | 1024 | 76.19m |

You Y. et al. Large batch optimization for deep learning: Training BERT in 76 minutes //arXiv preprint arXiv:1904.00962.

2019.
Skoltech

Skolkovo Institute of Science and Technology 1 9

Memory constraints

Large models do not fit to a GPU memory;

A rule of thumb is that for M parameters we need 12M bytes
12 = 4 bytes x 3 optimizer states

Activations take (0.1 - 10) x number of parameters.

Without offloading/checkpointing maximum is 2 billion on a
V100 GPU.

Skolkovo Institute of Science and Technology 2 0

Optimizer parallelism

DeepSpeed framework o o o, | oo 45

(httDS//C“thchom/ Baseline @+2+4K)+¥ | 12068
microsoft/DeepSpeed) Pes reeaw s e

proposed ZeRO: Posi 2w+ 20 osca
| | | | B 2+ 2+ K)*¥ 1.9G8
Pos+g+p . N,
The |dea |S to Spllt the = Parameters Gradients Optimizer States
0 pti m ize r State a n d Figure 1: Comparing the per-device memory consumption of model states, with three stages of

ZeRO-DP optimizations. ¥ denotes model size (number of parameters), K denotes the memory

g rad ie ntS betwee n n Od eS multiplier of optimizer states, and Ny denotes DP degree. In the example, we assume a model

size of ¥ = 7.5B and DP of Ny = 64 with K = 12 based on mixed-precision training with
Adam optimizer.

Rajbhandari S. et al. Zero: Memory optimizations toward training trillion parameter models //SC20:
International Conference for High Performance Computing, Networking, Storage and Analysis. —
IEEE, 2020. — C. 1-16.

Skoltech

Skolkovo Institute of Science and Technology 2 1

https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed

ZERO idea explained

: D ZeR
Each node stores only its eepSpeed + ZeRO

wel g htS a Memory usage without ZeRO With ZeRO

It computes the gradient - P

only for its weights — ' —
When parameters are - . R

required for forward or
backward, they are
received from broadcast

Rajbhandari S. et al. Zero: Memory optimizations toward training trillion parameter models //SC20:
International Conference for High Performance Computing, Networking, Storage and Analysis. —
IEEE, 2020. — C. 1-16.

Skoltech

Skolkovo Institute of Science and Technology 22

What else?

Zero reduces the computational cost, but induces
communication (i.e., we need to broadcast and wait)

Alternatives: split the model vertically or horizontally

One of the promising ideas is pipeline parallelism.

Skoltech

ooooooooooooooooooooooooooooooooooooooo 23

Pipeline parallelism

The batch is split into micro

Fo B. Update
batches | _[F . -
' m> B o
The model is split by layers - .
The G-Pipe approach Gradients | i | |
interleaves computations with
communication

Huang Y. et al. Gpipe: Efficient training of giant neural networks using pipeline parallelism //Advances in neural informa
processing systems. — 2019. - T. 32. — C. 103-112.

Skoltech

Skolkovo Institute of Science and Technology 24

Pipeline parallelism: is that optimal?

Pipedream: another
scheduler.

It takes into account:
e forward/backward time on

Iaye rl | Startup State . Steady State
L SIZG Of aCtlvathnS, I Forward Pass |:]Til;:ue:kward Pass Idle

e Size of parameters

Narayanan D. et al. PipeDream: generalized pipeline parallelism for DNN training //Proceedings of the 27th ACM
Symposium on Operating Systems Principles. — 2019. — C. 1-15. SkOltﬁ(‘Ah
|

lvll_l

Skolkovo Institute of Scit and Techn l ogy 25

Pipeline parallelism: is that optimal?

Pipedream uses dynamical
programming to recursively
split the computation between
workers

Startup State Steady State

The allocation problem is NP- . R
Complete (A ShllOva, theSIS) I Forward Pass |:]Tll;:ue:kward Pass Idle

Narayanan D. et al. PipeDream: generalized pipeline parallelism for DNN training //Proceedings of the 27th ACM
Symposium on Operating Systems Principles. — 2019. — C. 1-15. SkOltﬁ(‘Ah
|

lvll_l

Skolkovo Institute of Scit and Techn l ogy 26

Low-precision optimization

64 ~ FP16 Representable range

32

16 Become zero in FP16 FP16 denorms

Another way to speedup
computation is to use low-
precision computations

- N

12

1/4
1/8
/16
1/32

Using FP16 to store
optimizer states leads to
instabilities: underflow /
overflow (norm distribution)

1/64

Percentage of all activation gradient values

1/128

log,(magnitude)

Skoltech

Skolkovo Institute of Science and Technology 27

Low-precision optimization (from DALLE paper)

«The most challenging part was to use FP16 training»

e Scale resblocks (128 scales) + many tricks
e Not all parameters are used
e Underflow when dividing by M(!)

Skoltech

ooooooooooooooooooooooooooooooooooooooo 28

8-bit optimizer

Very promising idea to use 8-bit nonlinear (!) quantization

e Maintains 32-bit performance at a fraction of memory

footprint
e 4 (Momentum) and 8 (Adam) bytes / weight -> 1 and 2

bytes / weight

Dettmers T. et al. 8-bit Optimizers via Block-wise Quantization //arXiv preprint arXiv:2110.02861. — 2021.

Skolkovo Institute of Science and Technology 29

8-bit optimizer: idea

e Non-linear quantization N = max(T), 7€ = argmin| Q"™ — - |

e Dynamic tree ’ LN
quantization: dynamic
exponent and fraction f’_,H

e Blocks of weights are '1@7:@0@@6

quantized / normalized
independently

Figure 2: Dynamic tree quantization.

Dettmers T. et al. 8-bit Optimizers via Block-wise Quantization //arXiv preprint arXiv:2110.02861. — 2021.
Skoltech

Skolkovo Institute of Science and Technology 30

PowerSGD

To minimize communication, a
Si m p | e id ea iS Ve r'y u Sefu I : IOW- Algorithm 1 Rank-r POWERSGD compression
ra n k a p p rOXi m ati O n 1: The update vector A,, is treated as a list of tensors corresponding to individual model parameters.

Vector-shaped parameters (biases) are aggregated uncompressed. Other parameters are reshaped
into matrices. The functions below operate on such matrices independently. For each matrix
M € R™*™, a corresponding @@ € R™*" is initialized from an i.i.d. standard normal distribution.

. . . 2: function COMPRESS+AGGREGATE(update matrix M € R"*™, previous Q € R™*")
3 P+« MQ
Each layer gradient is a matrix = P o Now, P (M 4+ Ma)Q
5: P « ORTHOGONALIZE(P) > Orthonormal columns
6: Q«MTP
. . 7: Q + ALL REDUCE MEAN(Q) >Now, Q = (M + ...+ My)TP
We a p p rOXI m ate S u Ch m atrIX 8: return the compressed representation (P, Q). v
. . 9: end function R
by IOW—ra N k matrlx usi ng 10: function DECOMPRESS(P € R™", @ € R™*")
. 11 return PQT
randomized SVD 12: end function

It minimizes communications!

Vogels T., Karinireddy S. P., Jaggi M. PowerSGD: Practical low-rank gradient compression for distributed optimiza
Advances In Neural Information Processing Systems 32 (Nips 2019). — 2019. — T. 32. — Ne. CONF.

Skoltech

Skolkovo Institute of Science and Technology 31

Checkpointing

How can we deal with memory constraints?
What if even batch size = 1 does not fit?
The answer is checkpointing:

store some activations and recompute the rest

Skolkovo Institute of Science and Technology 32

Checkpointing

How can we deal with memory constraints?

We record the timing for backward and forward for each
block

We have memory constraint

We solve dynamic programming task (A. Shilova, O.
Beaumont, Lionel Eyraud-Dubois)

Skolkovo Institute of Science and Technology 33

Checkpointing

How can we deal with memory constraints?

We record the timing for backward and forward for each
block

We have memory constraint

We solve dynamic programming task (A. Shilova, O.
Beaumont, Lionel Eyraud-Dubois)

chk_gpu.compute_sequence(mem_limit=500%1024*1024)

print(chk_gpu.sequence)
print("Duration", chk_gpu.get_expected_makespan(), "Memory usage", rotor.memory.MemSize(chk_gpu.get_ expected_memory()))

[CF 0, Fe_1, CF 2, Fe 3, CF 4, Fe 5, CF_6, Fe 7, CF_8, Fe 9, CF_10, Fe 11, CF_12, Fe 13, CF_l4, Fe 15, CF_16, Fe 17, CF_18, Fe 19, CF_20, Fe 21, Fe 22, Fe 23, L, B_23, B :
Duration 641.2084645456862 Memory usage 345.0MiB

Skoltech

Skolkovo Institute of Science and Technology 34

Offloading

Network

AllGather ReduceScatter

1 x data movement} i

If the model does not fit to a (1/DP) x data movemem}m

[Tt 3
single GPU, we can use e B8 EE BN RS
. . . Layer O p
offloading (implemented in B o
ZERO-|annlty) Gradients (5, Ao 6| 6" 6’| 6Vl 1 67| 6 65 6
[Layer 1] A9 A A AON W 42| APl 48 AC

Different variants: . N .
. . Figure 4: A snapshot of ZeRO-Infinity training a model with two
we can Ofﬂo ad aCtlvatlonS’ layers on four data parallel (DP) ranks. Communication for the

backward pass of the first layer is depicted. Partitioned parameters

we can Oﬁ:load Weig htS are moved from slow memory to GPU and then collected to form

the full layer. After gradients are computed, they are aggregated, re-
partitoned, and then offloaded to slow memory. Layers are denoted
with subscripts and DP ranks are denoted with superscripts. For ex-

ample, Péz) is the portion of layer 0’s parameters owned by GPU (2,

Skoltech

Skolkovo Institute of Science and Technology 35

Activations offloading

5 - densenet-121 densenet-161 densenet-169 densenet-201
ynamical programming
1.20 -
. 12- 1.15- 1219 12-
K 1.10+ 14 - 11-
moving from one layer :
10~ ' . oo, 100 B ' 1.0- D . - 1.0-7= . .
2 4 6 8 10 5 10 15 25 50 75 100 4 8 12
to another and § | womonzo a2
[=% 14-
é :; 13- 13- 175 -
11 g 12- 12- 150 -
e erll”nlng e 2 - 1.1- 14- 1.25-
EREESS e miea e e R e el B e
& 2 3 4 4 6 8 10 25 50 75 100 125 13 14 15 16 1.7 18

constraints on this step) L
gives an optimal solution -

1.0~ ®
1

25 150 1.75 2.00 2.25 250 3 4 5 6

for a sequential model

Algorithm —e- AutoSwap —e- DynProg —e— Greedy —e— VDNN —o- TFLMS

FNEY
o v > o

PICtU re frOm A. S h | Iova Figure 3.5: Relative makespan (with respect to the lower bound) obtained by different

. algorithms for different memory limits. Experimental results are provided for image size
th esis 224 and batch size 32 (top), image size 500 and batch size 16 (bottom).

Skoltech

Skolkovo Institute of Science and Technology 36

What can be done

The existing software allows to reach 30-40% of the peak
GPU performance

In order to get a 10x speedup, we need to reduce the number
of flops

This can be done by approximating the inference
(quantization, partial model updates)

This would also require new optimization methods that are
robust to such scenarios
(remember quantization & large batch)

Skoltech

ooooooooooooooooooooooooooooooooooooooo 37

Our result (1): few-bit backward

= GELU derivative

1.0 7 —— 3-bit approximation
e \We replace the derivatives of the activations with _ 087
low-bit approximation f; 0.6 -
e 15-20% less memory 2 0.4 -
e Already used in training .
0.0

%, 2 s 6
xr

Figure 1. Optimized 3-bit piecewise-constant approximation of the
derivative of the GELU activation function.

Few-Bit Backward: Quantized Gradients of Activation Functions for Memory
Footprint Reduction

Georgii Novikov! Daniel Bershatsky ! Julia Gusak' Alex Shonenkov? Denis Dimitrov?3 Ivan Oseledets'*

Skoltech

Skolkovo Institute of Science and Technology

Programming deep learning from scratch: NNTile (C++)

e Model problem: 1 forward and backward step of the transformer-like model
e Memory required: 76.25 gigabytes (float32)
e Total amount of flops

Time, s: 31.0794 GFLOP/s: 13868 GFLOP/s/GPU: 13868
1. Time, s: 16.2025 GFLOP/s: 26601.4 GFLOP/s/GPU: 13300.7
2. Time, s: 11.5464 GFLOP/s: 37328.4 GFLOP/s/GPU: 12442.8
3. Time, s:9.87117 GFLOP/s: 43663.4 GFLOP/s/GPU: 10915.85
4. Time, s:9.87117 GFLOP/s: 43663.4 GFLOP/s/GPU: 10915.85

Idea is to replace matrices with tiles, and asyncronously process them

Skoltech

Skolkovo Institute of Science and Technology

Custom tensor layers

e We can replace fully connected layers by tensor-train matrix decomposition (Oseledets, 2009)
e For training, it reduces the number of parameters by 1.5x without significant reduction of accuracy
e Tensors are efficient representation of multidimensional data

Skoltech

Skolkovo Institute of Science and Technology

APPROXIMATION OF PROBABILITY DISTRIBUTIONS FROM SAMPLES USING TENSORS
We are given samples Xy, ..., X from the probability distribution
p(x) & qy(x)
K
Gox) = (g D)) = Y. g fil®)
k=1

Tensor-product basis: @ (x) = f(x) ® ... ® f;(x,), fi(x) € R™

We put tensor-train constraints on «, which is a d-dimensional tensor!

ooooooooooooooooooooooooooooooooooooooo

LOSS FUNCTION

As a loss function, we use Z(p(x) — qg(x))zdx = qudx — 2E,._,qp(x) + const

All these terms are computable.

Skoltech

Skolkovo Institute of Science and Technology

SQUARED TT-MODEL

TT-format for the density is not positive;

We also propose to use squared TT model

q = q5(x)

It happens, that the complexity of the basic operations (sampling, loss evaluation, etc.) does not grow
significantly with respect to the ranks.

Skoltech

Skolkovo Institute of Science and Technology

WHY TT IS GOOD?

- Sampling is cheap
- Likelihood is available

- Optimization can be done by Riemannian optimization

Table 1: Comparison of the capabilities of different density estimation models. *FFJORD does not use true log-likelihood i
the training process and instead uses its unbiased estimate.

Method Exact Sampling Tractable LL No middle-man Training Computation of CDF
FFJORD v v /* X
Normalizing Flows v v v X
GANs v/ X X X
VAEs v X v X
Autoregressive v v v X
Energy-based X X X X
TTDE (ours) v v v v

Skoltech

Skolkovo Institute of Science and Technology

EXPERIMENTS

- Sampling is cheap

- Likelihood is available

FFJORD

TTDE (ours) Zatlon

Random init. | Rank-1 init.
Adam 5 11
Riemannian | 12 32

Table 2: Experiment with mixture of 7 Gaussians in 3D with
additional dimensions containing only noise. We report the
maximum dimensionality for which approximation of the
density converges to the true one for different initialization
settings and optimization methods used.

Figure 1: Comparison of TTDE and FFJORD models on
2-dimensional toy distributions.

Skol

Skolkovo Institute of Science and Technology

EXPERIMENTS

- Sampling is cheap
- Likelihood is available

- Optimization can be done by Riemannian optimization

L
HEEE
[l 1 7

rank 1 rank 2 rank 4 rank 16

True distribution

N

\/

8 basis functions 4 basis functions

64 basis functions

Figure 2: Approximations of “two moons” distribution by TTDE for different basis function set sizes and TT-ranks.

Skoltech

Skolkovo Institute of Science and Technology

EXPERIMENTS

- Sampling is cheap
- Likelihood is available

- Optimization can be done by Riemannian optimization

POWER GAS HEPMASS MINIBOONE BSDS300

Dataset dimensionality 6 8 21 43 64
Gaussians -1.74 -3.58 -27.93 -37.24 96.67
MADE -3.08 3.56 -20.98 -15.59 148.85
Real NVP 0.17 8.33 -18.71 -13.84 153.28
Glow 0.17 8.15 -18.92 -11.35 155.07
FFJORD 0.46 8.59 -14.92 -10.43 157.40
Squared TTDE (ours) 0.46 8.93 —21.34* —28.77* 143.30

Skoltech

Skolkovo Institute of Science and Technology

EXPERIMENTS

- Sampling is cheap
- Likelihood is available

—— TTDE (ours)
0.7 —— FFJORD
—— MAF
0.6 —— Real NVP
\ — GLOW
0.5

sliced total variance
o o
w »

o
N

i
-

— —

o
=}

0 50 100 150 200 250
time (minutes)

Figure 4: Dependence of the sliced total variation w.r.t.

the training time for models trained on 6-dimensional UCI
POWER dataset.

—— TTDE (ours)
FFJORD

— MAF

—— Real NVP

— GLOW

w
o

N
w

N
o

time (sec.)
=
w

0.0 0.2 0.4 0.6 0.8 1.0
of samples le6

Figure 5: Dependence of the sampling time w.r.t. the num-
ber of samples to be generated for 6-dimensional space for
models trained on UCI POWER dataset. Our model outper-
forms its competitors and shows 2.6, 2.5, 1.4 and 1.2 times
speedups compared to FFJORD, MAF, GLOW and Real
NVP respectively.

EXPERIMENTS

- Sampling is cheap
- Likelihood is available

—— TTDE (ours)
0.7 —— FFJORD
—— MAF
0.6 —— Real NVP
\ — GLOW
0.5

sliced total variance
o o
w »

o
N

i
-

— —

o
=}

0 50 100 150 200 250
time (minutes)

Figure 4: Dependence of the sliced total variation w.r.t.

the training time for models trained on 6-dimensional UCI
POWER dataset.

—— TTDE (ours)
FFJORD

— MAF

—— Real NVP

— GLOW

w
o

N
w

N
o

time (sec.)
=
w

0.0 0.2 0.4 0.6 0.8 1.0
of samples le6

Figure 5: Dependence of the sampling time w.r.t. the num-
ber of samples to be generated for 6-dimensional space for
models trained on UCI POWER dataset. Our model outper-
forms its competitors and shows 2.6, 2.5, 1.4 and 1.2 times
speedups compared to FFJORD, MAF, GLOW and Real
NVP respectively.

REFERENCE

G. Novikov, M. Panoy, |. Oseledets Tensor-train density estimation, UAI, 2021.

