
Methods for training large-scale deep learning
models

Ivan Oseledets,
Center for Artificial Intelligence Technologies @Skoltech

Large scale deep learning models

2

● Standard way to train: stochastic gradient descent
● For many domains, it has been found that larger

models and larger datasets give better performance
● It includes: natural language processing (NLP), self-

supervised learning, vision transformers, contrastive
language image pretraining, etc.

 The time when you can train a large model on 1
GPU or on several GPUs is quickly going away!

Requires 190 MW*hours, 85
tonnes of CO2.

Green AI

126 houses in Denmark

Or car drive from Moon

Challenges in training

4

Two challenges:

Computational time

Memory for the model and batch

GPT-1 -> GPT-2 -> GPT-3

5

Models are getting bigger!

How much (from «Language models are few-shot learners»)?

6

● Two challenges: computational time and memory for the model
and batch

Some computational costs

7

● CLIP model: 18 days on 592 V100 GPUs (ResNet
backbone)
 12 days on 256 V100 GPUs

● DALLE-E model: 1024 V100 GPU
● VIT model: 2500 TPU v3 core-days
● PanGu-alpha model: 2048 Ascend 910 AI

processors ? days.

Recent «world record»: Megatron-LM

8

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-
megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-
language-model/

How to train a big model?

9

We have: the model and the data.

We train using stochastic gradient descent (SGD)

Given a batch of size

we compute: forward , backward

 is a feedforward neural network

x B × D

f(x, θ) ∇θ f(x, θ)

f

What is computed

10

For a backward pass, we need to store activations!
They consume 0.1 - 10x of the memory of the model
(depending on the batch size)

Type of parallelism

11

We need to use multi-node (GPU, Accelerators) system!

● Data parallelism: split the input batch into sub-
batches

● Model parallelism: split the parameters of the
model between different computational nodes

● Pipeline parallelism: minimize communication in
forward & backward passes

● Tensor parallelism: split the feature dimension
between different GPUs

Memory reduction techniques

12

We can use CPU memory to store things:

● Activation checkpointing: store some activations
in the CPU memory, recompute others (increases
computational time, decreases memory cost)

● Offloading: upload parts of the model weights/
activations to the CPU

Faster computations

13

Techniques that do not fall into ones above:

● Low-precision computations: use FP16 (or
even less) for computations. Increases
throughput, decreases memory may lead to bad
convergence; low-precision approximation of
(some) activations.

● 1-bit optimizers + PowerSGD: Approximate
gradients (even 1-bit), approximate the block

Data parallelism

14

The classical approach,
implemented in software, is data
parallelism

Each computational unit holds a
copy of the model, processes its
own batch and aggregates the
gradients

This is equivalent to large batch;
It also requires scatter-gather
operation

g1 = ∇θ f (x1, θ)

g2 = ∇θ f (x2, θ)
g3 = ∇θ f (x3, θ)

gall = g1 + g2 + g3

Data parallelism: large-batch training

15

This is equivalent to large batch;

How can we train with large batch
size without worse convergence?

We need to scale the learning rate
accordingly.

g1 = ∇θ f (x1, θ)

g2 = ∇θ f (x2, θ)
g3 = ∇θ f (x3, θ)

gall = g1 + g2 + g3

Large-batch training

16

This is equivalent to large batch;

We need to scale the learning rate
accordingly.

You Y. et al. Large batch optimization for deep learning: Training BERT in 76 minutes //arXiv preprint arXiv:1904.00962. –
2019.

Large-batch training

17

This is equivalent to large batch;

For example, for SGD we can have

You Y. et al. Large batch optimization for deep learning: Training BERT in 76 minutes //arXiv preprint arXiv:1904.00962. –
2019.

x(i)
t+1 = x(i)

t − ηt
ϕ(∥x(i)

t)∥)
∥g(i)

t ∥
g(i)

t

Large-batch training

18

This is equivalent to large batch;

LARS and LAMB (ADAM + Layer normalization)

You Y. et al. Large batch optimization for deep learning: Training BERT in 76 minutes //arXiv preprint arXiv:1904.00962. –
2019.

Large-batch training

19

This is equivalent to large batch;

BERT training on TPUS.

You Y. et al. Large batch optimization for deep learning: Training BERT in 76 minutes //arXiv preprint arXiv:1904.00962. –
2019.

Memory constraints

20

Large models do not fit to a GPU memory;

A rule of thumb is that for M parameters we need 12M bytes

12 = 4 bytes x 3 optimizer states

Activations take (0.1 - 10) x number of parameters.

Without offloading/checkpointing maximum is 2 billion on a
V100 GPU.

Optimizer parallelism

21

DeepSpeed framework
(https://github.com/
microsoft/DeepSpeed)
proposed ZeRO:

The idea is to split the
optimizer state and
gradients between nodes

Rajbhandari S. et al. Zero: Memory optimizations toward training trillion parameter models //SC20:
International Conference for High Performance Computing, Networking, Storage and Analysis. –
IEEE, 2020. – С. 1-16.

https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed

ZERO idea explained

22

Each node stores only its
weights;

It computes the gradient
only for its weights

When parameters are
required for forward or
backward, they are
received from broadcast

 Rajbhandari S. et al. Zero: Memory optimizations toward training trillion parameter models //SC20:
International Conference for High Performance Computing, Networking, Storage and Analysis. –
IEEE, 2020. – С. 1-16.

What else?

23

Zero reduces the computational cost, but induces
communication (i.e., we need to broadcast and wait)

Alternatives: split the model vertically or horizontally

One of the promising ideas is pipeline parallelism.

Pipeline parallelism

24

The batch is split into micro
batches

The model is split by layers

The G-Pipe approach
interleaves computations with
communication

Huang Y. et al. Gpipe: Efficient training of giant neural networks using pipeline parallelism //Advances in neural information
processing systems. – 2019. – Т. 32. – С. 103-112.

Pipeline parallelism: is that optimal?

25

Pipedream: another
scheduler.

It takes into account:
● forward/backward time on

layer l
● size of activations;
● Size of parameters

Narayanan D. et al. PipeDream: generalized pipeline parallelism for DNN training //Proceedings of the 27th ACM
Symposium on Operating Systems Principles. – 2019. – С. 1-15.

MLA

Pipeline parallelism: is that optimal?

26

Pipedream uses dynamical
programming to recursively
split the computation between
workers

The allocation problem is NP-
complete (A. Shilova, thesis).

Narayanan D. et al. PipeDream: generalized pipeline parallelism for DNN training //Proceedings of the 27th ACM
Symposium on Operating Systems Principles. – 2019. – С. 1-15.

MLA

Low-precision optimization

27

Another way to speedup
computation is to use low-
precision computations

Using FP16 to store
optimizer states leads to
instabilities: underflow /
overflow (norm distribution)

Low-precision optimization (from DALLE paper)

28

«The most challenging part was to use FP16 training»

● Scale resblocks (128 scales) + many tricks
● Not all parameters are used
● Underflow when dividing by M(!)

8-bit optimizer

29

Very promising idea to use 8-bit nonlinear (!) quantization

● Maintains 32-bit performance at a fraction of memory
footprint

● 4 (Momentum) and 8 (Adam) bytes / weight -> 1 and 2
bytes / weight

Dettmers T. et al. 8-bit Optimizers via Block-wise Quantization //arXiv preprint arXiv:2110.02861. – 2021.

8-bit optimizer: idea

30

● Non-linear quantization
● Dynamic tree

quantization: dynamic
exponent and fraction

● Blocks of weights are
quantized / normalized
independently

Dettmers T. et al. 8-bit Optimizers via Block-wise Quantization //arXiv preprint arXiv:2110.02861. – 2021.

N = max(T), TQ
i = arg min |Qmap

j −
Ti

N
|

PowerSGD

31

To minimize communication, a
simple idea is very useful: low-
rank approximation

Each layer gradient is a matrix

We approximate such matrix
by low-rank matrix using
randomized SVD

It minimizes communications!
Vogels T., Karinireddy S. P., Jaggi M. PowerSGD: Practical low-rank gradient compression for distributed optimization //
Advances In Neural Information Processing Systems 32 (Nips 2019). – 2019. – Т. 32. – №. CONF.

Checkpointing

32

How can we deal with memory constraints?

What if even batch size = 1 does not fit?

The answer is checkpointing:

store some activations and recompute the rest

Checkpointing

33

How can we deal with memory constraints?

We record the timing for backward and forward for each
block

We have memory constraint

We solve dynamic programming task (A. Shilova, O.
Beaumont, Lionel Eyraud-Dubois)

Checkpointing

34

How can we deal with memory constraints?

We record the timing for backward and forward for each
block

We have memory constraint

We solve dynamic programming task (A. Shilova, O.
Beaumont, Lionel Eyraud-Dubois)

Offloading

35

If the model does not fit to a
single GPU, we can use
offloading (implemented in
ZERO-Infinity)

Different variants:
we can offload activations;
we can offload weights

Activations offloading

36

Dynamical programming
(moving from one layer
to another and
determining the
constraints on this step)
gives an optimal solution
for a sequential model

Picture from A. Shilova
thesis

What can be done

37

The existing software allows to reach 30-40% of the peak
GPU performance

In order to get a 10x speedup, we need to reduce the number
of flops

This can be done by approximating the inference
(quantization, partial model updates)

This would also require new optimization methods that are
robust to such scenarios
(remember quantization & large batch)

Our result (1): few-bit backward

● We replace the derivatives of the activations with
low-bit approximation

● 15-20% less memory
● Already used in training

Programming deep learning from scratch: NNTile (C++)

Time, s: 31.0794 GFLOP/s: 13868 GFLOP/s/GPU: 13868
1. Time, s: 16.2025 GFLOP/s: 26601.4 GFLOP/s/GPU: 13300.7
2. Time, s: 11.5464 GFLOP/s: 37328.4 GFLOP/s/GPU: 12442.8
3. Time, s: 9.87117 GFLOP/s: 43663.4 GFLOP/s/GPU: 10915.85
4. Time, s: 9.87117 GFLOP/s: 43663.4 GFLOP/s/GPU: 10915.85

● Model problem: 1 forward and backward step of the transformer-like model
● Memory required: 76.25 gigabytes (float32)
● Total amount of flops

Idea is to replace matrices with tiles, and asyncronously process them

Custom tensor layers

● We can replace fully connected layers by tensor-train matrix decomposition (Oseledets, 2009)
● For training, it reduces the number of parameters by 1.5x without significant reduction of accuracy
● Tensors are efficient representation of multidimensional data

We are given samples from the probability distribution

Tensor-product basis:

We put tensor-train constraints on which is a d-dimensional tensor!

x1, …, xN

p(x) ≈ qθ(x)

qθ(x) = ⟨αθ, Φ(x)⟩ =
K

∑
k=1

αθ,k fk(x)

Φ(x) = f (x1) ⊗ … ⊗ fd(xd), fk(x) ∈ ℝmk

α,

APPROXIMATION OF PROBABILITY DISTRIBUTIONS FROM SAMPLES USING TENSORS

As a loss function, we use

All these terms are computable.

ℒ(p(x) − qθ(x))2dx = ∫ q2
θ dx − 2Ex∼pqθ(x) + const

LOSS FUNCTION

TT-format for the density is not positive;
We also propose to use squared TT model

It happens, that the complexity of the basic operations (sampling, loss evaluation, etc.) does not grow
significantly with respect to the ranks.

̂q = q2
θ (x)

SQUARED TT-MODEL

- Sampling is cheap
- Likelihood is available
- Optimization can be done by Riemannian optimization

WHY TT IS GOOD?

- Sampling is cheap
- Likelihood is available
- Optimization can be done by Riemannian optimization

EXPERIMENTS

- Sampling is cheap
- Likelihood is available
- Optimization can be done by Riemannian optimization

EXPERIMENTS

- Sampling is cheap
- Likelihood is available
- Optimization can be done by Riemannian optimization

EXPERIMENTS

- Sampling is cheap
- Likelihood is available
- Optimization can be done by Riemannian optimization

EXPERIMENTS

- Sampling is cheap
- Likelihood is available
- Optimization can be done by Riemannian optimization

EXPERIMENTS

REFERENCE

G. Novikov, M. Panov, I. Oseledets Tensor-train density estimation, UAI, 2021.

