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Large scale deep learning models
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● Standard way to train: stochastic gradient descent 
● For many domains, it has been found that larger 

models and larger datasets give better performance 
● It includes: natural language processing (NLP), self-

supervised learning, vision transformers, contrastive 
language image pretraining, etc.

 The time when you can train a large model on 1 
GPU or on several GPUs is quickly going away! 



Requires 190 MW*hours, 85 
tonnes of CO2.

Green AI 

126 houses in Denmark

Or car drive from Moon 



Challenges in training 
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Two challenges:  

Computational time  

Memory for the model and batch



GPT-1 -> GPT-2 -> GPT-3
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Models are getting bigger!



How much (from «Language models are few-shot learners»)?
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● Two challenges: computational time and memory for the model 
and batch



Some computational costs
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● CLIP model: 18 days on 592 V100 GPUs (ResNet 
backbone) 
                     12 days on 256 V100 GPUs 

● DALLE-E model: 1024 V100 GPU 
● VIT model: 2500 TPU v3 core-days 
● PanGu-alpha model: 2048 Ascend 910 AI 

processors ? days.



Recent «world record»: Megatron-LM
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https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-
megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-
language-model/



How to train a big model?
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We have: the model and the data.  

We train using stochastic gradient descent (SGD)  

Given a batch  of size  

we compute: forward , backward  

 is a feedforward neural network

x B × D

f(x, θ) ∇θ f(x, θ)

f



What is computed
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For a backward pass, we need to store activations! 
They consume 0.1 - 10x of the memory of the model 
(depending on the batch size)



Type of parallelism 
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We need to use multi-node (GPU, Accelerators) system! 

● Data parallelism: split the input batch into sub-
batches 

● Model parallelism: split the parameters of the 
model between different computational nodes 

● Pipeline parallelism: minimize communication in 
forward & backward passes 

● Tensor parallelism: split the feature dimension 
between different GPUs 



Memory reduction techniques
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We can use CPU memory to store things: 

● Activation checkpointing: store some activations 
in the CPU memory, recompute others (increases 
computational time, decreases memory cost) 

● Offloading:  upload parts of the model weights/
activations to the CPU



Faster computations
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Techniques that do not fall into ones above: 

● Low-precision computations: use FP16 (or 
even less) for computations. Increases 
throughput, decreases memory may lead to bad 
convergence; low-precision approximation of 
(some) activations. 

● 1-bit optimizers + PowerSGD:  Approximate 
gradients (even 1-bit), approximate the block



Data parallelism
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The classical approach, 
implemented in software, is data 
parallelism  

Each computational unit holds a 
copy of the model, processes its 
own batch and aggregates the 
gradients 

This is equivalent to large batch;  
It also requires scatter-gather 
operation

g1 = ∇θ f (x1, θ)

g2 = ∇θ f (x2, θ)
g3 = ∇θ f (x3, θ)

gall = g1 + g2 + g3



Data parallelism: large-batch training
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This is equivalent to large batch;  

How can we train with large batch 
size without worse convergence?  

We need to scale the learning rate 
accordingly.

g1 = ∇θ f (x1, θ)

g2 = ∇θ f (x2, θ)
g3 = ∇θ f (x3, θ)

gall = g1 + g2 + g3



Large-batch training

16

This is equivalent to large batch;  

We need to scale the learning rate 
accordingly.

You Y. et al. Large batch optimization for deep learning: Training BERT in 76 minutes //arXiv preprint arXiv:1904.00962. – 
2019.



Large-batch training
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This is equivalent to large batch;  

For example, for SGD we can have 

You Y. et al. Large batch optimization for deep learning: Training BERT in 76 minutes //arXiv preprint arXiv:1904.00962. – 
2019.

x(i)
t+1 = x(i)

t − ηt
ϕ(∥x(i)

t )∥)
∥g(i)

t ∥
g(i)

t



Large-batch training
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This is equivalent to large batch;  

LARS and LAMB (ADAM + Layer normalization) 

You Y. et al. Large batch optimization for deep learning: Training BERT in 76 minutes //arXiv preprint arXiv:1904.00962. – 
2019.



Large-batch training
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This is equivalent to large batch;  

BERT training on TPUS.

You Y. et al. Large batch optimization for deep learning: Training BERT in 76 minutes //arXiv preprint arXiv:1904.00962. – 
2019.



Memory constraints
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Large models do not fit to a GPU memory;  

A rule of thumb is that for M parameters we need 12M bytes 

12 = 4 bytes x 3 optimizer states 

Activations take (0.1 - 10) x number of parameters. 

Without offloading/checkpointing maximum is 2 billion on a 
V100 GPU.



Optimizer parallelism 
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DeepSpeed framework  
(https://github.com/
microsoft/DeepSpeed) 
proposed ZeRO: 

The idea is to split the 
optimizer state and 
gradients between nodes

Rajbhandari S. et al. Zero: Memory optimizations toward training trillion parameter models //SC20: 
International Conference for High Performance Computing, Networking, Storage and Analysis. – 
IEEE, 2020. – С. 1-16.

https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed


ZERO idea explained
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Each node stores only its 
weights; 

It computes the gradient 
only for its weights 

When parameters are 
required for forward or 
backward, they are 
received from broadcast 

 Rajbhandari S. et al. Zero: Memory optimizations toward training trillion parameter models //SC20: 
International Conference for High Performance Computing, Networking, Storage and Analysis. – 
IEEE, 2020. – С. 1-16.



What else?
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Zero reduces the computational cost, but induces 
communication (i.e., we need to broadcast and wait) 

Alternatives: split the model vertically or horizontally 

One of the promising ideas is pipeline parallelism. 



Pipeline parallelism
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The batch is split into micro 
batches 

The model is split by layers 

The G-Pipe approach 
interleaves computations with 
communication

Huang Y. et al. Gpipe: Efficient training of giant neural networks using pipeline parallelism //Advances in neural information 
processing systems. – 2019. – Т. 32. – С. 103-112.



Pipeline parallelism: is that optimal?
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Pipedream: another 
scheduler. 

It takes into account:   
● forward/backward time on 

layer l 
● size of activations; 
● Size of parameters

Narayanan D. et al. PipeDream: generalized pipeline parallelism for DNN training //Proceedings of the 27th ACM 
Symposium on Operating Systems Principles. – 2019. – С. 1-15. 

MLA 



Pipeline parallelism: is that optimal?
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Pipedream uses dynamical 
programming to recursively 
split the computation between 
workers 

The allocation problem is NP-
complete (A. Shilova, thesis).

Narayanan D. et al. PipeDream: generalized pipeline parallelism for DNN training //Proceedings of the 27th ACM 
Symposium on Operating Systems Principles. – 2019. – С. 1-15. 

MLA 



Low-precision optimization

27

Another way to speedup 
computation is to use low-
precision computations 

Using FP16 to store 
optimizer states leads to 
instabilities: underflow / 
overflow (norm distribution)



Low-precision optimization (from DALLE paper)
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«The most challenging part was to use FP16 training» 

● Scale resblocks (128 scales) + many tricks 
● Not all parameters are used  
● Underflow when dividing by M(!)  



8-bit optimizer
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Very promising idea to use 8-bit nonlinear (!) quantization  

● Maintains 32-bit performance at a fraction of memory 
footprint  

● 4 (Momentum) and 8 (Adam) bytes / weight -> 1 and 2 
bytes / weight 

Dettmers T. et al. 8-bit Optimizers via Block-wise Quantization //arXiv preprint arXiv:2110.02861. – 2021. 



8-bit optimizer: idea
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● Non-linear quantization 
● Dynamic tree 

quantization: dynamic 
exponent and fraction 

● Blocks of weights are 
quantized / normalized 
independently 

Dettmers T. et al. 8-bit Optimizers via Block-wise Quantization //arXiv preprint arXiv:2110.02861. – 2021. 

N = max(T ), TQ
i = arg min |Qmap

j −
Ti

N
|



PowerSGD
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To minimize communication, a 
simple idea is very useful: low-
rank approximation 

Each layer gradient is a matrix  

We approximate such matrix 
by low-rank matrix using 
randomized SVD 

It minimizes communications! 
Vogels T., Karinireddy S. P., Jaggi M. PowerSGD: Practical low-rank gradient compression for distributed optimization //
Advances In Neural Information Processing Systems 32 (Nips 2019). – 2019. – Т. 32. – №. CONF.



Checkpointing
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How can we deal with memory constraints?  

What if even batch size = 1 does not fit? 

The answer is checkpointing:  

store some activations and recompute the rest



Checkpointing
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How can we deal with memory constraints?  

We record the timing for backward and forward for each 
block 

We have memory constraint 

We solve dynamic programming task (A. Shilova, O. 
Beaumont, Lionel Eyraud-Dubois) 



Checkpointing
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How can we deal with memory constraints?  

We record the timing for backward and forward for each 
block 

We have memory constraint 

We solve dynamic programming task (A. Shilova, O. 
Beaumont, Lionel Eyraud-Dubois) 



Offloading
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If the model does not fit to a 
single GPU, we can use 
offloading (implemented in 
ZERO-Infinity)  

Different variants: 
we can offload activations; 
we can offload weights



Activations offloading
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Dynamical programming 
(moving from one layer 
to another and 
determining the 
constraints on this step)  
gives an optimal solution 
for a sequential model 

Picture from A. Shilova 
thesis 



What can be done
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The existing software allows to reach 30-40% of the peak 
GPU performance 

In order to get a 10x speedup, we need to reduce the number 
of flops 

This can be done by approximating the inference 
(quantization, partial model updates) 

This would also require new optimization methods that are 
robust to such scenarios  
(remember quantization & large batch) 



Our result (1): few-bit backward

● We replace the derivatives of the activations with 
low-bit approximation 

● 15-20% less memory 
● Already used in training



Programming deep learning from scratch: NNTile (C++)

Time, s: 31.0794     GFLOP/s: 13868        GFLOP/s/GPU: 13868 
1. Time, s: 16.2025     GFLOP/s: 26601.4     GFLOP/s/GPU: 13300.7 
2. Time, s: 11.5464     GFLOP/s: 37328.4     GFLOP/s/GPU: 12442.8 
3. Time, s: 9.87117     GFLOP/s: 43663.4     GFLOP/s/GPU: 10915.85 
4. Time, s: 9.87117     GFLOP/s: 43663.4     GFLOP/s/GPU: 10915.85

● Model problem: 1 forward and backward step of the transformer-like model  
● Memory required: 76.25 gigabytes (float32) 
● Total amount of flops

Idea is to replace matrices with tiles, and asyncronously process them



Custom tensor layers

● We can replace fully connected layers by tensor-train matrix decomposition (Oseledets, 2009) 
● For training, it reduces the number of parameters by 1.5x without significant reduction of accuracy 
● Tensors are efficient representation of multidimensional data



We are given samples  from the probability distribution 

Tensor-product basis: 

We put tensor-train constraints on which is a d-dimensional tensor!

x1, …, xN

p(x) ≈ qθ(x)

qθ(x) = ⟨αθ, Φ(x)⟩ =
K

∑
k=1

αθ,k fk(x)

Φ(x) = f (x1) ⊗ … ⊗ fd(xd), fk(x) ∈ ℝmk

α,

APPROXIMATION OF PROBABILITY DISTRIBUTIONS FROM SAMPLES USING TENSORS



As a loss function, we use 

All these terms are computable.

ℒ(p(x) − qθ(x))2dx = ∫ q2
θ dx − 2Ex∼pqθ(x) + const

LOSS FUNCTION



TT-format for the density is not positive; 
We also propose to use squared TT model

It happens, that the complexity of the basic operations (sampling, loss evaluation, etc.) does not grow 
significantly with respect to the ranks.

̂q = q2
θ (x)

SQUARED TT-MODEL



- Sampling is cheap
- Likelihood is available
- Optimization can be done by Riemannian optimization 

WHY TT IS GOOD?
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