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Motivation

Increasing importance and number of practical applications of CNN applications:

3
Source: 

1) https://medium.com/@ismailou.sa
2) https://machinelearningmastery.com/cyclegan-tutorial-with-keras/
3) https://www.internetandtechnologylaw.com/bias-facial-recognition-flaws

https://medium.com/@ismailou.sa
https://machinelearningmastery.com/cyclegan-tutorial-with-keras/
https://www.internetandtechnologylaw.com/bias-facial-recognition-flaws


Motivation

Source: https://www.usenix.org/system/files/conference/hotedge18/hotedge18-papers-zhang.pdf

Comparison between cumbersome (AlexNet) and light-weight (SqueezeNet)  CNN architectures on 
different edge platforms (MacBook, FogNode and JetsonTX2) and frameworks (TensorFlow, Caffe2, 
PyTorch and MXNet) 

DL model limitations:

● High memory consumption
● Huge computational requirements
● Great power consumption

Difficult to deploy on portable devices 

(e.g. laptops and smartphones)

Efficient architecture design is required
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https://www.usenix.org/system/files/conference/hotedge18/hotedge18-papers-zhang.pdf


Metrics to optimize

Real metrics:
● Inference time
● Memory consumption
● Battery consumption

Proxy metrics:
● FLOPs - number of computational operations required for inference
● N parameters - number of trained parameters
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Efficient architecture design methods

Efficient neural architecture design

● MobileNet
● ShuffleNet
● GhostNet

Neural network compression

● Weight Decomposition
● Unstructured Pruning
● Structured Pruning
● Quantization
● Knowledge Distillation
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Convolutional Neural Network reminder

Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Convolutional Neural Network reminder

Most computations are concentrated in convolutional layer
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Source: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Design efficient models from scratch
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MobileNet

Idea: Replace ordinary convolution by depth-wise separable convolution

 Original convolution complexity:

 Depth-wise separable convolution complexity: 
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Source:  https://arxiv.org/pdf/1704.04861.pdf
 https://arxiv.org/pdf/1801.04381.pdf
 https://arxiv.org/pdf/1905.02244.pdf
 https://habr.com/ru/post/352804/

MobileNet block

MobileNet v2 block

https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1801.04381.pdf
https://arxiv.org/pdf/1905.02244.pdf
https://habr.com/ru/post/352804/


ShuffleNet

Idea: 1x1 Convolution is still an expensive operation. It can be accelerated by 
channel shuffling operation.

11Source:  https://arxiv.org/pdf/1707.01083.pdf

MobileNet block Shufflenet block ShuffleNet block 
ShuffleNet operation visualization

https://arxiv.org/pdf/1707.01083.pdf


GhostNet

Idea: Generate redundancy in featuremap by cheap operations
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Source:  https://arxiv.org/pdf/1911.11907.pdf

https://arxiv.org/pdf/1911.11907.pdf


Results
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Source:  https://arxiv.org/pdf/1911.11907.pdf

https://arxiv.org/pdf/1911.11907.pdf


Model compression
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Model compression

● Most neural networks are redundant

● Redundancy helps to achieve a better 
performance

● Redundancy helps during training but 
harms during inference
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Source: https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html 

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html


Weight Decomposition: Preliminaries
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Weight Decomposition: Preliminaries

Matrix decomposition:

Tensor decomposition:
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Source: https://www.researchgate.net/publication/359367892_electronics-11-009451/figures?lo=1&utm_source=google&utm_medium=organic

https://www.researchgate.net/publication/359367892_electronics-11-009451/figures?lo=1&utm_source=google&utm_medium=organic


Weight Decomposition
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Pipeline:
1. Extract convolutional kernel
2. Decompose it into factors: A, G, B 
3. Replace initial layer by sequence of layers with 

factors as kernels
4. Fine-tune network

Result:
1. Faster inference
2. Lower memory consumption
3. Longer battery life

Source:  https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Weight Decomposition
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Source:  https://arxiv.org/pdf/1912.09802.pdf

https://arxiv.org/pdf/1912.09802.pdf


Weight Decomposition

Pros:

● Achieves high theoretical speedup with low performance degradation
● Does not require additional hardware support

Cons:

● Poorly works with non-standard convolutions (PW, DW, Group)
● Requires careful rank selection
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Pruning: Preliminaries
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Unstructured Pruning

aka Fine-Grained Pruning aka Weight Sparsification
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Source:  https://arxiv.org/pdf/1506.02626.pdf

https://arxiv.org/pdf/1506.02626.pdf


Unstructured Pruning
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Source:  https://arxiv.org/pdf/1506.02626.pdf

https://arxiv.org/pdf/1506.02626.pdf


Unstructured Pruning

List of possible criterions:

● Weight-based criteria (L1/L2 norm)

● Gradient-based criteria
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Source:  https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Learning_Filter_Pruning_Criteria_for_Deep_Convolutional_Neural_Networks_Acceleration_CVPR_2020_paper.pdf

https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Learning_Filter_Pruning_Criteria_for_Deep_Convolutional_Neural_Networks_Acceleration_CVPR_2020_paper.pdf


Unstructured Pruning: Lottery Ticket Hypothesis

25Source:  https://towardsdatascience.com/the-lottery-ticket-hypothesis-a-survey-d1f0f62f8884
 https://arxiv.org/pdf/1803.03635.pdf
 https://arxiv.org/pdf/1903.01611.pdf

https://towardsdatascience.com/the-lottery-ticket-hypothesis-a-survey-d1f0f62f8884
https://arxiv.org/pdf/1803.03635.pdf
https://arxiv.org/pdf/1903.01611.pdf


Unstructured Pruning: Lottery Ticket Hypothesis
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Source:  https://towardsdatascience.com/the-lottery-ticket-hypothesis-a-survey-d1f0f62f8884

https://towardsdatascience.com/the-lottery-ticket-hypothesis-a-survey-d1f0f62f8884


Unstructured Pruning

Pros:

● Achieves high rates of weight reduction without acc. drop (~ 95% of weights 
removed)

Cons:

● Requires hardware support for sparse computation speedup
● Hard to find sparsity level for all layers of the network

27



Structured Pruning

Removing structural parts instead of individual weights
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Source:  https://heartbeat.fritz.ai/neural-network-pruning-research-review-2020-bc21a77f0295

https://heartbeat.fritz.ai/neural-network-pruning-research-review-2020-bc21a77f0295


Structured Pruning

List of possible criterions:

● Weight-based criteria:
○ L1/L2 norm
○ Scaling parameter in BN

● Activation-based criteria:
○ PCA of activations

● Gradient-based criteria
● Greedy and One-shot Pruning

29
Source:  https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Learning_Filter_Pruning_Criteria_for_Deep_Convolutional_Neural_Networks_Acceleration_CVPR_2020_paper.pdf

https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Learning_Filter_Pruning_Criteria_for_Deep_Convolutional_Neural_Networks_Acceleration_CVPR_2020_paper.pdf


Structured Pruning

Pros:

● Efficiently accelerates model
● No need of hardware/software support (pruned model is structurally 

equivalent to initial model)

Cons:

● Pruning channels/filters in one layer affects previous/subsequent layers
● Hard to find best filter configuration for the whole network
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Pruning
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Quantization

Reduce redundancy in weight numerical 
representation

● DNNs are known to be quite robust to noise 
and other small perturbations

● Weights and activations by a particular layer 
often tend to lie in a small range

● Arithmetic with lower bit-depth is faster
● Reduces memory consumption (e.g. in 

moving from 32-bits to 8-bits, we get (almost) 
4x reduction in memory)

32Source:  https://heartbeat.fritz.ai/8-bit-quantization-and-tensorflow-lite-speeding-up-mobile-inference-with-low-precision-a882dfcafbbd
 https://arxiv.org/pdf/1712.05877.pdf

https://heartbeat.fritz.ai/8-bit-quantization-and-tensorflow-lite-speeding-up-mobile-inference-with-low-precision-a882dfcafbbd
https://arxiv.org/pdf/1712.05877.pdf


Quantization

33Source:  https://heartbeat.fritz.ai/8-bit-quantization-and-tensorflow-lite-speeding-up-mobile-inference-with-low-precision-a882dfcafbbd
 https://arxiv.org/pdf/1510.00149.pdf
 

https://heartbeat.fritz.ai/8-bit-quantization-and-tensorflow-lite-speeding-up-mobile-inference-with-low-precision-a882dfcafbbd
https://arxiv.org/pdf/1510.00149.pdf


Quantization

Pros:

● Easy combine with other methods (low-rank, pruning, etc.)
● Easy to apply (supported in modern NN frameworks: pytorch, tensorflow)
● Efficient model acceleration and compression
● Few quantization options => easy to find the best
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Knowledge Distillation

Knowledge distillation is a 
process of distilling or 
transferring the knowledge 
from a (set of) large, 
cumbersome model(s) to a 
lighter, easier-to-deploy single 
model

35Credits: http://ir.hit.edu.cn/~xiachongfeng/slides/Knowledge%20Distillation.pdf
             https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764 

 

http://ir.hit.edu.cn/~xiachongfeng/slides/Knowledge%20Distillation.pdf
https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764


Knowledge Distillation

A more abstract view of the knowledge, that frees it from any particular instantiation, is that it is a learned 
mapping from input vectors to output vectors.

36
Credits: http://ir.hit.edu.cn/~xiachongfeng/slides/Knowledge%20Distillation.pdf 

 

http://ir.hit.edu.cn/~xiachongfeng/slides/Knowledge%20Distillation.pdf


Knowledge Distillation

Idea: Train less redundant model by using knowledge from big models

37Source:  https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764

 

Input image

Output probability distribution

https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764


Knowledge Distillation

● Response-Based Knowledge

● Feature-Based Knowledge

● Relation-Based Knowledge



Knowledge Distillation
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Knowledge Distillation

Pros:

● Improves model performance

Cons:

● Capacity gap
● Controversy of the method
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Summary

Efficient neural architecture design

● MobileNet
● ShuffleNet
● GhostNet

Neural network compression

● Weight Decomposition
● Unstructured Pruning
● Structured Pruning
● Quantization
● Knowledge Distillation
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Thanks for your attention!
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