

Practical algorithms for Recommender Systems (Part 2)

Evgeny Frolov

Research Scientist, Skoltech

Today

01 More on Matrix Factorization

O 2 Hybrid Recommender Systems

03 Context-awareness

01

Matrix Factorization (continued)

Previous lecture – a general view on latent factors models

Task:

find a relevance function

$$f_R$$
: $r_{ij} \approx \boldsymbol{p}_i^{\mathsf{T}} \boldsymbol{q}_j = \sum_{k=1}^d p_{ik} q_{jk}$

o via an optimization problem:

$$\mathcal{L}(A,R) \to \min$$

Components of the solution:

- Utility function to generate R
- \circ Optimization objective \mathcal{L}
- Optimization algorithm

Previous lecture - PureSVD model

$$\|A_0 - R\|_{\mathrm{F}}^2 \to \min$$
, s.t. $\operatorname{rank}(R) = d$
$$[A_0]_{ij} = \begin{cases} a_{ij}, & \text{if known} \\ 0, & \text{otherwise} \end{cases}$$

$$f_R \colon R = A_0 V_d V_d^{\mathsf{T}}$$

Efficient computation with Lanczos algorithm:

- iterative process
- requires only sparse matrix-vector (matvec) multiplications (fast with CSR format);
- training complexity $O(nnz \cdot d) + O((M+N) \cdot d^2)$

Efficient implementations in Python:

- SciPy Sparse svds, Scikit-Learn TruncatedSVD.
- core functionality is also implemented in Spark.

In distributed setups, randomized SVD is used.

More general MF optimization scheme

Optimization objective:

$$\mathcal{J}(\Theta) = \mathcal{L}(A, \Theta) + \Omega(\Theta)$$

Model parameters: $\Theta = \{P, Q\}$

 $\Omega(\Theta)$ - additional constraints, e.g. L_2 regularization

Typical optimization algorithms:

stochastic gradient descent (SGD)

alternating least squares (ALS)

ALS: GD:
$$\begin{cases}
P^* = \arg\min_{P} \mathcal{J}(\Theta) & \{ \boldsymbol{p}_i \leftarrow \boldsymbol{p}_i - \eta \nabla_{\boldsymbol{p}_i} \mathcal{J} \\
Q^* = \arg\min_{Q} \mathcal{J}(\Theta) & \{ \boldsymbol{q}_j \leftarrow \boldsymbol{q}_j - \eta \nabla_{\boldsymbol{q}_j} \mathcal{J} \\
\end{pmatrix}$$

ALS vs SGD vs SVD

ALS

- More stable
- Fewer hyper-parameters to tune
- Higher complexity, however requires fewer iterations
- Embarrassingly parallel
- Higher communication cost in distributed environment
- Coordinate Descent can be a good alternative (e.g., eALS by [He et al. 2016])

SGD

- Sensitive to hyper-parameters
- Requires special treatment of learning rate
- Lower complexity but slower convergence, using adaptive learning rate schedule (ADAM, Adagard, etc.) helps
- Inherently sequential (parallelization is tricky for RecSys)
- Hogwild! algorithm is not directly applicable in CF settings

Algorithm	Overall complexity	Update complexity	Sensitivity
SVD*	$O(nnz_A \cdot r + (M+N)r^2)$	$O(nnz_a \cdot r)$	Stable
ALS	$O\left(nnz_A \cdot r^2 + (M+N)r^3\right)$	$O\left(nnz_a\cdot r + r^3\right)$	Stable
CD	$O(nnz_A \cdot r)$	$O(nnz_a \cdot r)$	Stable
SGD	$O(nnz_A \cdot r)$	$O(nnz_a \cdot r)$	Sensitive

(ALS, SGD) vs SVD:

- More involved optimization (no rank truncation).
- Allow for custom optimization objectives.

^{*} For both standard and randomized implementations [71].

Working with imbalanced data

- SGD:
 - negative sampling
- iALS:
 - confidence weights

$$\mathcal{L} = \sum_{ij} w(a_{ij}) \cdot l(s_{ij} - r_{ij})^2$$

- PureSVD
 - data normalization

$$\tilde{A} = DA_0, \qquad [D]_{ii} = ||a_i||^{f-1}$$

All these methods aim to balance contribution of positive and negative items!

Case study: Yandex Zen

Company manages different types of media content (news, search, etc.). Goal: have a unified user representation across all domains.

Solution:

- A DNN embeds unstructured content into a shared latent space
- Users are updated through the "half"-ALS scheme

Algorithm:

- Get Q from external source (DNN)
- Update P based on most recent Q

02

Hybrid Recommender Systems

The problem of rare interactions

The problem of rare interactions

How to mitigate that?

Example of content features

Users

More attributes:

- demographics
- location
- occupation

- ...

Items

Other features:

- price
- format/style
- language
- ...

Mitigating cold-start problems with hybrid approach

Pure content-based filtering may not be effective:

- noisy / incomplete side information,
- overspecialization.

Pure collaborative filtering is inapplicable in cold start!

How can we use side information for recovering latent features?

Simple linear regression model

f(user features, item features) \rightarrow feedback

$$r = \mathbf{w}^{\mathsf{T}}\mathbf{z} + \epsilon$$

Does it provide personalized recommendations?

$$r_{ui} = b_{user} + b_{item} + \boldsymbol{w}_{user}^{\mathsf{T}} \boldsymbol{x}_{u} + \boldsymbol{w}_{item}^{\mathsf{T}} \boldsymbol{y}_{i}$$

How to add personalization?

We need a way to entangle user and item features!

Example:

- users are described with 2 features based on age group, e.g. [>18, >65]
- items are described with 3 features based on book genre, e.g., [is action, is romance, is drama]

How to add personalization?

 let's encode all possible combinations of features via Cartesian product (bias terms are omitted for simplicity):

$$Z = \mathbf{x} \mathbf{y}^{\mathsf{T}}, \qquad \mathbf{x} = \begin{bmatrix} x_1, \dots, x_{m_x} \end{bmatrix}^{\mathsf{T}}, \qquad \mathbf{y} = \begin{bmatrix} y_1, \dots, y_{n_y} \end{bmatrix}^{\mathsf{T}}$$

new model:

$$r = \mathbf{w}^{\mathsf{T}} \mathbf{z}, \qquad \mathbf{z} = \mathrm{vec}(Z)$$

• or equivalently:

$$r = \mathbf{x}^{\mathsf{T}} W \mathbf{y},$$
 $vec(W) = \mathbf{w}, \qquad W \in \mathbb{R}^{m_x \times n_y}$

Improved top-*n* ranking

the model:

$$r_{xy} = \mathbf{x}^{\mathsf{T}} W \mathbf{y} = \sum_{i=1}^{m_{\chi}} \sum_{j=1}^{n_{y}} w_{ij} \cdot x_{i} y_{j}$$

• ranking now depends on the association strength w_{ij} between user features \mathbf{x}_i and item features \mathbf{y}_i

$$r_{xy} - r_{xy'} = \sum_{i=1}^{m_x} x_i \sum_{j=1}^{n_y} w_{ij} \cdot (y_j - y_j')$$

learned parameters of the global model: O(

Limited expressiveness of the model

still, there're problems:

- various items/users may have the same features overspecialization
- if ratings are different → ill-posed problem

What additional information will help?

Improved personalized regression model

personalization issue fix – encode user and item ids:

$$r_{xy} = \mathbf{x}^{\mathsf{T}} W \mathbf{y}$$
 $\mathbf{x}^{\mathsf{T}} = [\mathbf{x}_{\mathrm{id}}^{\mathsf{T}} \ \mathbf{x}_{\mathrm{feat}}^{\mathsf{T}}], \qquad \mathbf{y}^{\mathsf{T}} = [\mathbf{y}_{\mathrm{id}}^{\mathsf{T}} \ \mathbf{y}_{\mathrm{feat}}^{\mathsf{T}}]$

matrix form:

$$R =$$

- resolves expressiveness problem
- # learned parameters:

Combating data sparsity

Structural problem:

- the weights matrix W can become restrictively large
- conversely, there's only a small number of known user-item interactions

How can we deal with that?

Imposing low rank structure:

$$W = PQ^{\mathsf{T}}$$

yields:

$$R = XP(YQ)^{\mathsf{T}}$$

SVDFeature

$$\min \mathcal{L}(A, R)$$

$$R = (XP)(YQ)^{\top}$$

$$X = [X_1 \ X_2 \ ... \ X_m], \qquad Y = [Y_1 \ Y_2 \ ... \ Y_n]$$

Including bias terms:

$$r = b_0 + \boldsymbol{g}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{f}^{\mathsf{T}} \boldsymbol{y} + \boldsymbol{x}^{\mathsf{T}} P Q^{\mathsf{T}} \boldsymbol{y}$$

- $b_0 = \sum_{g \in G} \gamma_g \mu_g$ is precomputed.
- model parameters: $\Theta = \{g, f, P, Q\}$
- optimized with ALS, SGD, BPR.

LightFM

- Same general approach as in SVDFeature
- Option to pick logistic loss
- SGD with BPR/WARP optimizers

M. Kula, "Metadata embeddings for user and item cold-start recommendations." 2015. https://github.com/lyst/lightfm

The model is parameterised in terms of d-dimensional user and item feature embeddings e_f^U and e_f^I for each feature f. Each feature is also described by a scalar bias term (b_f^U for user and b_f^I for item features).

The latent representation of user u is given by the sum of its features' latent vectors:

$$oldsymbol{q}_u = \sum_{j \in f_u} oldsymbol{e}_j^U$$

The same holds for item i:

$$oldsymbol{p}_i = \sum_{j \in f_i} oldsymbol{e}_j^I$$

The bias term for user u is given by the sum of the features' biases:

$$b_u = \sum_{j \in f_u} b_j^U$$

The same holds for item i:

$$b_i = \sum_{j \in f_i} b_j^I$$

The model's prediction for user u and item i is then given by the dot product of user and item representations, adjusted by user and item feature biases:

$$\widehat{r}_{ui} = f\left(\boldsymbol{q}_u \cdot \boldsymbol{p}_i + b_u + b_i\right) \tag{1}$$

There is a number of functions suitable for $f(\cdot)$. An identity function would work well for predicting ratings; in this paper, I am interested in predicting binary data, and so after Rendle *et al.* [16] I choose the sigmoid function

$$f(x) = \frac{1}{1 + \exp(-x)}.$$

The optimisation objective for the model consists in maximising the likelihood of the data conditional on the parameters. The likelihood is given by

$$L\left(\boldsymbol{e}^{U}, \boldsymbol{e}^{I}, \boldsymbol{b}^{U}, \boldsymbol{b}^{I}\right) = \prod_{(u,i) \in S^{+}} \widehat{r}_{ui} \times \prod_{(u,i) \in S^{-}} (1 - \widehat{r}_{ui}) \quad (2)$$

Factorization Machines

Idea: polynomial expansion

$$f(\mathbf{z}) = b_0 + \mathbf{b}^{\mathsf{T}} \mathbf{z} + \mathbf{z}^{\mathsf{T}} H \mathbf{z} + \cdots$$

Factorization Machines

$$r = b_0 + \mathbf{g}^{\mathsf{T}} \mathbf{x} + \mathbf{f}^{\mathsf{T}} \mathbf{y} + \mathbf{x}^{\mathsf{T}} P Q^{\mathsf{T}} \mathbf{y}$$
$$b = \begin{bmatrix} t \\ f \end{bmatrix}, \qquad z = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$r(\mathbf{z}) = \mathbf{b}_0 + \mathbf{b}^\mathsf{T} \mathbf{z} + \mathbf{z}^\mathsf{T} \mathbf{H} \mathbf{z} + \cdots$$

characterizes relations between all types of encoded entities

Data is sparse \rightarrow impose low-rank structure on H

H is symmetric positive semi-definite

$$H = VV^{T}$$
 V embeds all users, items and their side information

2nd order FM:

$$r(\mathbf{z}) = b_0 + \sum_{k=1}^{K} b_k z_k + \sum_{k=1}^{K} \sum_{k'=k+1} \mathbf{v}_k^{\mathsf{T}} \mathbf{v}_{k'} \cdot z_k z_{k'}$$

Model parameters: $\Theta = \{b_0, \mathbf{z}, V\}$

user i item j side information

 z_k :

Factorization Machines computation
$$\mathbf{z} = \begin{bmatrix} \mathbf{z} \\ \mathbf{y} \\ \mathbf{f} \end{bmatrix} \qquad V = \begin{bmatrix} V_{x} \\ V_{y} \\ V_{f} \end{bmatrix} \qquad V \in \mathbb{R}^{K \times d} \qquad \mathbf{z} \in \mathbb{R}^{K} :$$

$$\mathbf{z}^{T}VV^{T}\mathbf{z} = \left(\begin{bmatrix} \mathbf{x}^{T} & \mathbf{y}^{T} & \mathbf{f}^{T} \end{bmatrix} \begin{bmatrix} V_{x} \\ V_{y} \\ V_{f} \end{bmatrix} \right) \left(\begin{bmatrix} V_{x}^{T} & V_{y}^{T} & V_{f}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{f} \end{bmatrix} \right) = (\mathbf{x}^{T}V_{x} + \mathbf{y}^{T}V_{y} + \mathbf{f}^{T}V_{f})(\mathbf{x}^{T}V_{x} + \mathbf{y}^{T}V_{y} + \mathbf{f}^{T}V_{f})^{T} = \mathbf{y}^{T}V_{x} + \mathbf{y}^{T}V_{y} + \mathbf{f}^{T}V_{x} + \mathbf{y}^{T}V_{y} + \mathbf{f}^{T}V_{y} + \mathbf{f}^{T}V_$$

"self-interaction" terms

actual 2nd order FM model r(z) (w/o biases)

$$= x^{T} V_{x} V_{x}^{T} x + y^{T} V_{y} V_{y}^{T} y + f^{T} V_{f} V_{f}^{T} f + 2 (x^{T} V_{x} V_{y}^{T} y + x^{T} V_{x} V_{f}^{T} f + y^{T} V_{y} V_{f}^{T} f)$$
user-item user-feature item-feature interactions

$$\boldsymbol{v}_{x} = V_{x}^{T} \boldsymbol{x}, \ \boldsymbol{v}_{y} = ...$$

$$v_x = V_x^T x$$
, $v_y = ...$ $r(z) = \frac{1}{2} [(v_x + v_y + v_f)^T (v_x + v_y + v_f) - (||v_x||^2 + ||v_y||^2 + ||v_f||^2)] = 0$

$$=\frac{1}{2}\sum_{l=1}^{d}\left(\left(\sum_{k=1}^{K}v_{kl}Z_{k}\right)^{2}-\sum_{k=1}^{K}(v_{kl}Z_{k})^{2}\right)$$
 reduces the number of operations Cupuyc

Matrix form of FM

$$\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{f} \end{bmatrix} \qquad V = \begin{bmatrix} V_x \\ V_y \\ V_f \end{bmatrix} \qquad V \in \mathbb{R}^{K \times d} \qquad \mathbf{z} \in \mathbb{R}^K: \qquad \text{user } i \text{ item } j \text{ features } f_1, f_2, f_3$$

$$r(\mathbf{z}) = \frac{1}{2} \mathbf{z}^T \left(\begin{bmatrix} V_x \\ V_y \\ V_f \end{bmatrix} \begin{bmatrix} V_x^T & V_y^T & V_f^T \end{bmatrix} - \begin{bmatrix} V_x & 0 \\ V_y & V_f \end{bmatrix} \begin{bmatrix} V_x & 0 \\ 0 & V_f \end{bmatrix} \begin{bmatrix} V_x & 0 \\ 0 & V_f \end{bmatrix}^T \right) \mathbf{z} = \mathbf{z}^T \left(\begin{bmatrix} V_x \\ V_y \\ V_f \end{bmatrix} \begin{bmatrix} V_x \\ V_y \end{bmatrix} \begin{bmatrix} V_x \\ V_y \end{bmatrix} \mathbf{z} \right)$$

$$= \frac{1}{2} \mathbf{z}^T \begin{bmatrix} 0 & V_{\mathcal{X}} V_{\mathcal{Y}}^T & V_{\mathcal{X}} V_{f}^T \\ V_{\mathcal{Y}} V_{\mathcal{X}}^T & 0 & V_{\mathcal{Y}} V_{f}^T \\ V_{f} V_{\mathcal{X}}^T & V_{f} V_{\mathcal{Y}}^T & 0 \end{bmatrix} \mathbf{z} = \mathbf{z}^T H \mathbf{z}$$

Connection between FM, LightFM and MF

$$V = \begin{bmatrix} V_x \\ V_y \\ V_{f_x} \\ V_{f_y} \end{bmatrix}, \quad \mathbf{z} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{f}_x \\ \mathbf{f}_y \end{bmatrix} \qquad \mathbf{z} \in \mathbb{R}^K: \quad \text{user} \quad \text{item user features item features}$$

$$V \in \mathbb{R}^K \times d, \quad K = M + N + m_x + n_y$$

$$H = \frac{1}{2} \begin{bmatrix} 0 & V_{x}V_{y}^{\mathsf{T}} & V_{x}V_{f_{x}}^{\mathsf{T}} & V_{x}V_{f_{y}}^{\mathsf{T}} \\ V_{y}V_{x}^{\mathsf{T}} & 0 & V_{y}V_{f_{x}}^{\mathsf{T}} & V_{y}V_{f_{y}}^{\mathsf{T}} \\ V_{f_{x}}V_{x}^{\mathsf{T}} & V_{f_{x}}V_{y}^{\mathsf{T}} & 0 & V_{f_{x}}V_{f_{y}}^{\mathsf{T}} \\ V_{f_{y}}V_{x}^{\mathsf{T}} & V_{f_{y}}V_{y}^{\mathsf{T}} & V_{f_{y}}V_{f_{x}}^{\mathsf{T}} & 0 \end{bmatrix}$$

Challenges

Finding linear map is a hard task in general:

it becomes part of a main optimization routine.

If there're too many different types of real features

the latent space size may explode.

Incorporating side information into correlations

"similarity" of users i and j depends on co-occurrence of items in their preferences

$$C = AA^T = U\Sigma^2 U^T \quad \leftrightarrow \quad c_{ij} = a_i^T a_j$$

Key idea: replace scalar products with a bilinear form.

HybridSVD – formal problem statement

- 1. Build SPD similarity matrices K, S for users and items based on *side information*.
- 2. Solve a new eigen-decomposition problem:

$$\begin{cases} ASA^T = U\Sigma^2 U^T \\ A^T KA = V\Sigma^2 V^T \end{cases}$$

 Σ is a diagonal matrix of singular values.

HybridSVD solution

$$\begin{cases} AA^{\mathsf{T}} = U\Sigma^{2}U^{\mathsf{T}} \\ A^{\mathsf{T}}A = V\Sigma^{2}V^{\mathsf{T}} \end{cases} \qquad \qquad \begin{cases} ASA^{\mathsf{T}} = U\Sigma^{2}U^{\mathsf{T}} \\ A^{\mathsf{T}}KA = V\Sigma^{2}V^{\mathsf{T}} \end{cases}$$

Solution:

via SVD of an auxiliary matrix [Abdi 2007; Allen et al. 2014]:

$$L_K^{\mathsf{T}} A L_S = \widehat{U} \Sigma \widehat{V}^T$$
, $L_K L_K^T = K$, $L_S L_S^T = S$

link to the original latent space

$$L_K^{-\top} \widehat{U} = U, \quad L_S^{-\top} \widehat{V} = V$$

Properties:

latent space structure: $U^{\top}KU = I$, $V^{\top}SV = I$

"hybrid" folding-in: $\boldsymbol{p} = L_S^{-T} \widehat{V} \widehat{V}^T L_S^T \boldsymbol{a}$.

Computation example (naïve)


```
# recommendations for the user with standard folding-in approach
recs = p.dot(v).dot(v.T)
recs
# output: [ 0.8904344 , 0.31234752, 0.31234752, 0.8904344 , 0. ]
```

```
# ======= Hybrid Model =======
d = 0.5 # off-diagonal similarity factor
# item similarity matrix
# non-zero off-diagonal values denote similarity between items 3 and 5
s = np.array([[1, 0, 0, 0, 0],
              [0, 1, 0, 0, 0],
              [0, 0, 1, 0, d],
             [0, 0, 0, 1, 0],
              [0, 0, d, 0 ,1]])
# finding Cholesky factors
L = np.linalg.cholesky(s)
u2, s2, v2 = np.linalg.svd(a.dot(L), full_matrices=False)
v2 = v2.T[:, :rank]
# preparing for hybrid folding-in calculation
lv = L.dot(v2)
rv = spsolve triangular(csr matrix(L.T), v2, lower=False)
# recommendations for the user with hybrid model
recs2 = p.dot(lv).dot(rv.T)
recs2
# output: [0.96852129, 0.08973892, 0.58973892, 0.96852129, 0.
```


Latent space structure with HybridSVD

• Use general semantic similarity of words based on a global model, e.g. word2vec.

Solving cold start with HybridSVD

Using the S-orthogonality property:

$$VW = F \rightarrow W = V^{\mathsf{T}}SF$$

← analytic solution

Given any feature vector f, we find the corresponding embedding v from:

$$W^{\mathsf{T}}v = f$$

← quick to solve

Relevance scores prediction:

$$p = U\Sigma v = AVv$$

Works for PureSVD as well by setting S = I, K = I.

Notes on HybridSVD scalability

Auxiliary matrix $L_K^T A L_S$ is likely to become dense:

can be avoided via matvec in the Lanczos procedure.

Building similarity matrices *K* and *S* can also be prohibitively expensive:

- use sparse QR / Cholesky decompositions (via <u>scikit-sparse</u>) or
- compute similarities in the reduced dimension + QR /Cholesky via fast symmetric factorization [Ambikasaran et al. 2014].

03

Context-awareness

Context vs Content

There's no sharp boundary!

Content is typically:

- static,
- fixed to an entity it describes.

Context is typically:

- situational / dynamic,
- characterizes interaction between entities.

Context or content? (user, movie, *genre*, *tag*)

Examples of context in RecSys

Also: folksonomies, cross-domain RS, temporal models, etc.

Contextual recommendations

```
f_U: User × Item → Relevance \downarrow f_U: User × Item × Context → Relevance \downarrow f_U: User × Item × Context<sub>1</sub> × ··· × Context<sub>f</sub> → Relevance
```

Suggest an approach for contextual modeling.

Higher order contextual models

FM models pairwise (or 2-way) relations

 f_U : User × Item × Context \rightarrow Relevance

How does FM capture triplet interactions?

Multiway (multi-aspect) learning

 f_U : User × Item × Context₁ × ··· × Context_f → Relevance

In the paradigm of contextual modeling:

- data seem to be better described via multiway relations
- multiway relations can be naturally encoded via tensor formats

Higher Order SVD (HOSVD)

Tensor matricization (unfolding)

 \times_n denotes a tensor product, e.g., for tensor \mathcal{A} and matrix B:

$$[\mathcal{A} \times_n B]_{i_1...i_{n-1} \ j \ i_{n+1}...i_m} = \sum a_{i_1 i_2...i_m} b_{j i_n}$$

HOSVD procedure

compute from tensor unfoldings:

 $U \leftarrow d_1$ left singular vectors of $\mathcal{A}_0^{(1)}$

 $V \leftarrow d_2$ left singular vectors of $\mathcal{A}_0^{(2)}$

 $W \leftarrow d_3$ left singular vectors of $\mathcal{A}_0^{(3)}$

$$\mathcal{G} \leftarrow \mathcal{A}_0 \times_1 U \times_2 V \times_3 W$$

return *U, V, W, G*

Contextual top-n recommendations scenarios

recommend the best items within a selected context

e.g., best restaurant based on location

$$toprec(u, c, n) := \arg \max_{i}^{n} r_{uic}$$

recommend the best context for a target item

• e.g., find best distribution channel

$$toprec(u, i, n) := \arg \max_{c}^{n} r_{uic}$$

User feedback peculiarities

2.5x better?

Traditional recommender models treat ratings as cardinal numbers.

From neoclassical economics: utility is an ordinal concept.

Negative feedback problem

What is likely to be recommended in this case?

User feedback is negative!

Probably the user doesn't like criminal movies.

Redefining the utility function Standard MF model

 f_U : User × Item \rightarrow Rating

ratings are cardinal values

$$||A_0 - R||_F^2 \to \min$$

$$R = U\Sigma V^{\top}$$

Collaborative Full Feedback model — Coffee*

 f_U : User × Item × Rating → Relevance Score

$$||\mathcal{A}_0 - \mathcal{R}||_F^2 \to \min$$

$$\mathcal{R} = \mathcal{G} \times_1 U \times_2 V \times_3 W$$

Higher order folding-in

 $R \approx VV^{\mathsf{T}}PWW^{\mathsf{T}}$ predictions matrix

Compare to SVD:

 $r = VV^{\mathsf{T}}p$ predictions vector

"Shades" of ratings

More dense colors correspond to higher relevance score.

 $R = VV^{\mathsf{T}} PWW^{\mathsf{T}}$ matrix of known user preferences

Solves both tasks:

- ranking
- rating prediction

Granular view of user preferences, concerning all possible ratings.

Model is equally sensitive to any kind of feedback.

Warm-start with CoFFee

Uncovers new recommendation modes:

"users who like this also like..."

"users who **dislike** this, do like..."

	Scarface ★★☆☆☆	LOTR: The Two Towers ★★☆☆☆	Star Wars: Episode VII - The Force Awakens ★★★★★
CoFFee	Toy Story	Net, The	Dark Knight, The
	Mr. Holland's Opus	$\operatorname{Cliffhanger}$	Batman Begins
	Independence Day	Batman Forever	Star Wars: Episode IV - A New Hope
SVD	Reservoir Dogs	LOTR: The Fellowship of the Ring	Dark Knight, The
	$\operatorname{Goodfellas}$	Shrek	Inception
	Godfather: Part II, The	LOTR: The Return of the King	Iron Man

Artificial Intelligence Research Institute

airi.net

- airi_research_institute
- AIRI Institute
- AIRI Institute
- AIRI_inst
- in artificial-intelligence-research-institute