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What is a recommender system?

Examples:
• Amazon
• Netflix
• Pandora
• Spotify
• Social platforms
• etc.

Many different areas: e-commerce, news, tourism, entertainment, education…

Goal: predict user preferences given some prior information on user behavior.



In a more general sense

Social Networks:
user ↔ user 

Sequential data: 
item → next item
(order matters)

Ternary relations: 
user → action → location

Recommender Systems aim to recover partially 
observed relations between two or more entities.



Material Discovery and Recommender Systems

Image Source
Seko, Atsuto, Hiroyuki Hayashi, Hisashi Kashima, and Isao Tanaka. "Recommender Systems for Materials Discovery." 
In Machine Learning Meets Quantum Physics, pp. 427-443. Springer, Cham, 2020.

Finding chemically relevant compositions and atomic 
arrangements of inorganic compounds using information from 
inorganic crystal structure databases.

Discovered compounds and their stability



Drug Discovery and Recommender Systems

Image Source:

Gogleva, Anna, Eliseo Papa, Erik Jansson, and Greet De Baets. "Drug 

Discovery as a Recommendation Problem: Challenges and Complexities in 

Biological Decisions." In Fifteenth ACM Conference on Recommender Systems, 
pp. 548-550. 2021.

Image Source:

Sosnina, Ekaterina A., Sergey Sosnin, Anastasia A. Nikitina, Ivan Nazarov, 

Dmitry I. Osolodkin, and Maxim V. Fedorov. "Recommender systems in 
antiviral drug discovery." ACS omega 5, no. 25 (2020): 15039-15051.



Some of our Lab’s projects

Federated
Collaborative
Filtering with Privacy

Hyperbolic Geometry 
in Recommender 
Systems

Fake Reviews 
detection

Q: get, shop, unfriendly, disrespect, 
tuxedo, disappoint, working, location, 
ridicule, shirt, new

A: I’ve been shopping for tuxedos here 
for years and I’ve never been treated 
with the courtesy and respect that I got 
from the staff here. The sales clerk has 
never even remembered my name and 
they have no patience for my inquiries. 
I’ve only ever had a good experience at
the other stores on the Pike. 



General workflow
Goal: predict user preferences based on prior user feedback and collective user behavior.

? ? 3

5 5 ?

4.5 ? 4

build modelcollect data generate
recommendations

𝑓𝑅: User × Item → Relevance

𝑓𝑅

user-movie matrix 𝐴 of size 𝑀 ×𝑁

𝑎𝑖𝑗 is a rating of 𝑖𝑡ℎuser for 𝑗𝑡ℎ movie

? - missing (unknown) values

?
𝑓𝑅

unknown user



Building a good recommender system is difficult

“If you like The Diversity Myth book by Peter 
Thiel you may also like a kettlebell.”

“Need engine parts? You may find these 
women shoes relevant.”



Deep Learning in 
Recommender Systems
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FC feed-forward networks vs discreet relationships

Experiment:
• approximate tensor 𝒳 of the form

𝑥𝑢𝑖𝑐 = 𝑣(𝑢,𝑐), 𝑣𝑖

𝑢, 𝑖, 𝑐 are (user, item, context) triplets

• TF baseline model is learned in the form

𝑣𝑢, 𝑣𝑖 , 𝑣𝑐

Source: Beutel, Alex, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H. Chi. "Latent cross: Making use of 
context in recurrent recommender systems." In Proceedings of the Eleventh ACM International Conference on Web Search 
and Data Mining, pp. 46-54. 2018.



FC feed-forward networks vs multiplicative relationships

Experiment:
• model multiplicative relations

(“feature crosses”) between

𝑣𝑖 ∼ 𝒩 0,
1

𝑟0.5⋅𝑚
𝐼

𝑟 – dimensionality of hidden space
m – # of tensor modes in data

• network architecture:

ℎ𝜏 = 𝑔 𝑊𝜏ℎ𝜏−1 + 𝑏𝜏

Source: Beutel, Alex, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H. Chi. "Latent cross: Making use of 
context in recurrent recommender systems." In Proceedings of the Eleventh ACM International Conference on Web Search 
and Data Mining, pp. 46-54. 2018.



About “the hype”

How it is presented

How it works in practice

MF

RecWalk: Nearly Uncoupled Random Walks for Top-N Recommendation
http://www.nikolako.net/papers/ACM_WSDM2019_RecWalk.pdf

http://www.nikolako.net/papers/ACM_WSDM2019_RecWalk.pdf


MLP vs dot product

fully connected feed-forward networks seem to be not good 
at learning multiplicative relationships (like dot products)

Source: Rendle, Steffen, Walid Krichene, Li Zhang, and John Anderson. "Neural 
collaborative filtering vs. matrix factorization revisited." In Fourteenth ACM 
conference on recommender systems, pp. 240-248. 2020.



Netflix experience

https://slideslive.com/38916930/recent-trends-in-personalization-a-netflix-perspective
https://www.slideshare.net/justinbasilico/recent-trends-in-personalization-a-netflix-perspective

https://www.slideshare.net/justinbasilico/recent-trends-in-personalization-a-netflix-perspective
https://www.slideshare.net/justinbasilico/recent-trends-in-personalization-a-netflix-perspective


Example 3 - IKEA

taken from RecSys’19 conference

Selling«inspirational shopping experience»
based on intelligent matching of products 
within a common design style.

Paper: Designer-driven add-to-cart recommendations
https://dl.acm.org/doi/10.1145/3298689.3346959

https://dl.acm.org/doi/10.1145/3298689.3346959


DNN’s are also good for sequential modeling

Deep Learning for Sequential Recommendation: Algorithms, Influential Factors, and Evaluations

https://arxiv.org/pdf/1905.01997.pdf


How recsys is different from NLP?

• BERT for NLP:
• vocabulary size is 30K x 1024,
• compute makes up almost the entire workload.

• Transformer-based recsys:
• equivalent ‘vocabulary’ is 300M users and 12M items with 

dimension 64,
• don’t fit on a single GPU, heavily IO-bound.

…inference for recommender systems in production still happens on CPU because GPUs 
don’t offer the same speedups that we see in other domains out of the box…

Even Oldridge, research scientist at NVidia

Source: Why isn’t your recommender system training faster on GPU?

https://medium.com/nvidia-merlin/why-isnt-your-recommender-system-training-faster-on-gpu-and-what-can-you-do-about-it-6cb44a711ad4


Collaborative Filtering with 
Matrix Factorization
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A general view on latent factors models

𝐴

𝑀
us

er
s

𝑁 items

• Task: find utility (relevance) function 𝑓𝑅 :

𝑓𝑅: Users × Items → Relevance score

• As optimization problem with some loss function ℒ:

ℒ 𝐴, 𝑅 → min

• Components of the model:

o Utility function to generate 𝑅

o Optimization objective defined by ℒ

o Optimization method (algorithm)

known entries
unknown entries



Intuition behind MF

Assumption: observed interactions can be explained via

• a small number of common patterns in human behavior

• + individual variations (including random and unobservable factors)

This is a recipe for low rank approximation:

𝐴𝑓𝑢𝑙𝑙 = 𝑅 + 𝐸, 𝑅 = 𝑃𝑄⊤



Low rank representation

? 3 5 5

4 ? 5 5

4 3 ?

? 3 5

4 ? 5

4 5

? 5



How to work with large ratings matrix?

𝑀 = 1_000_000 users, 𝑁 = 100_000 items would require ≈ 𝟕𝟒𝟓 Gb of RAM.

How to avoid explicitly forming it?

Images source: http://www.slideshare.net/hamukazu/effective-numerical-computation-in-num-py-and-scipy

http://www.slideshare.net/hamukazu/effective-numerical-computation-in-num-py-and-scipy


Simplistic view on latent features

Sci-fi
Action
Drama
Comedy

latent features ↔ genres

≈

𝑃 𝑄⊤

𝑑

𝒑𝑖
⊤

𝒒𝑗

𝐴

𝑀
us

er
s

𝑁 items 𝑑 ≪ min(𝑀,𝑁)
𝑗

𝑖

Sci-Fi

𝒑𝑖 – latent factors vector for user 𝑖 (user embedding)
𝒒𝑗 – latent factors vector for item 𝑗 (item embedding)

Predicted relevance score (utility) of item 𝑗 for user 𝑖:

𝑟𝑖𝑗 ≈ 𝒑𝑖
⊤𝒒𝑗 = 

𝑘=1

𝑑

𝑝𝑖𝑘𝑞𝑗𝑘



Top-𝑛 recommendations task

toprec 𝑖, 𝑛 ≔ argmax
𝑗

𝑟𝑖𝑗
𝑛

𝑟𝑖𝑗 - is the predicted relevance score
between user 𝑖 and item 𝑗

0.73 0.41 0.95𝑟𝑖𝑗

item

top-2 recommendations

Expected output: a ranked list of 𝑛 most relevant items.

leftsorted list

Example:



Suggest a matrix factorization approach



Low-rank approximation task:

𝐴 − 𝑅 F
2 → min, s. t. rank 𝑅 = 𝑑

𝑅 = 𝑈𝑑Σ𝑑𝑉𝑑
⊤, 𝐴 − 𝑅 F

2 =

Quick reminder on Singular Value Decomposition

Undefined for incomplete matrix!

𝐴 = 𝑈Σ𝑉⊤

𝑈 ∈ ℝ𝑀×𝑀, 𝑉 ∈ ℝ𝑁×𝑁

𝑈⊤𝑈 = 𝐼𝑀, 𝑉⊤𝑉 = 𝐼𝑁

Σ ∈ ℝ𝑀×𝑁 - diagonal, with Σ 𝑘𝑘 = 𝜎𝑘:

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎min 𝑀,𝑁 ≥ 0

𝜎𝑘 𝐴 = 𝜆𝑘 𝐴⊤𝐴 = 𝜆𝑘 𝐴𝐴⊤

Truncated SVD
of rank 𝑑 ≪ min(𝑀,𝑁)

𝑈𝑑 Σ𝑑 𝑉𝑑
⊤𝐴

←

𝑑

𝑑
𝑓𝑅



PureSVD model for CF

Let’s impute zeros in place of unknowns!

𝐴0 = 𝑈Σ𝑉⊤, 𝐴0 𝑖𝑗 = ቊ
𝑎𝑖𝑗 , if known

0, otherwise

𝑅 = 𝑈𝑑Σ𝑑𝑉𝑑
⊤

𝑈𝑑 Σ𝑑 𝑉𝑑
⊤𝐴

←

𝑑

𝑑

𝑑𝑑

𝑀
us

er
s

𝑁 items

𝑓𝑅

Relevance score prediction:

𝐴0𝑉𝑑𝑉𝑑
⊤ =



PureSVD computation

Efficient computation with Lanczos algorithm:

• iterative process

• requires only sparse matrix-vector (matvec)
multiplications (fast with CSR format); 

• training complexity O 𝑛𝑛𝑧 ⋅ 𝑑 + O (𝑀 + 𝑁) ⋅ 𝑑2

Efficient implementations in Python: 

• SciPy Sparse svds, Scikit-Learn TruncatedSVD.

• core functionality is also implemented in Spark.



Explaining recommendations

Which one is more explainable?

𝒓 = 𝑄𝒑 vs. 𝒓 = 𝑉𝑉⊤𝒂



Lifecycle of a recsys model

Train a 
model

Recommend
Gather 

feedback

Gather initial data



PureSVD – recommending online

folding-in technique*

*G. Furnas, S. Deerwester, and S. Dumais, “Information Retrieval 
Using a Singular Value Decomposition Model of Latent Semantic 
Structure,” Proceedings of ACM SIGIR Conference, 1988

Finding a warm-start user representation:

𝒂0
⊤ − 𝒖⊤Σ𝑉⊤

2

2
→ min

new user embedding
𝒖⊤ = 𝒂0

⊤𝑉Σ−1

Prediction:
𝒓⊤ = 𝒖⊤Σ𝑑𝑉𝑑

⊤ = 𝒂0
⊤𝑉𝑑𝑉𝑑

⊤

𝒓 = 𝑉𝑑𝑉𝑑
⊤𝒂0

• convenient for evaluation
• complexity ~O 𝑁𝑑
• enables real-time recommendations

←

𝐴 𝑈𝑑 Σ𝑑 𝑉𝑑
⊤

𝒂𝑇

new user
𝒖𝑑
⊤

update

𝑓𝑅



Approximation error estimates

Practical consequences:

• even in the simplest case singular values won’t become 0

• no simple choice of the optimal rank of the decomposition

• 𝐴 − 𝑈𝑑Σ𝑑𝑉𝑑
⊤

F

2
= 𝜎𝑑+1

2 +⋯+ 𝜎min(𝑀,𝑁)
2

• doesn’t mean you can’t get close to zero RMSE on trainset

? 3 5 5

4 ? 5 5

A = 𝟙 ⋅ 𝒂⊤ + 𝜖𝐵

𝜎1
2 𝐴 ≤ 𝑀 𝒂 2 + 𝜖2𝑁, 𝜎𝑖

2 𝐴 ~𝜖2𝑁, 𝑖 > 1



CF as low-rank approximation task

LRA

Images source: Khoshrou, Abdolrahman, and Eric J. Pauwels. "Regularisation for 
PCA-and SVD-type matrix factorisations." arXiv preprint 
arXiv:2106.12955 (2021).

unknown in reality



Data centering (PCA style)

Observations:

• in PureSVD, values are highly biased towards 0

• from rating prediction perspective: a signal is carried mostly by baseline 
estimators / average values

How does it affect rating prediction?

Strategy:

• value imputation → mean shifted matrix

• akin to data centering in PCA



Mean-shifted ratings matrix spectrum

𝐴full = ሚ𝐴0 + 𝛼 𝟙 𝟙⊤

𝜎1
2 𝐴full = 𝜎1

2 ሚ𝐴0 + 𝛼2𝑀𝑁, 𝜎𝑖
2 𝐴full ≈ 𝜎𝑖

2 ሚ𝐴0 , 𝑖 > 1

Would it improve quality of recommendations?

Verifying it poses the same scalability problem: 
𝑀 = 1_000_000 users, 𝑁 = 100_000 items would require ≈ 𝟕𝟒𝟓 Gb of RAM. 
How to avoid it?



Practical consequences

What MF for Collaborative Filtering is not:
• pure matrix completion 
• pure dimensionality reduction

Common PCA-like preprocessing may spoil data representation!

Rating prediction doesn’t make sense:
• recommendations can still be good without accurate rating estimation!
• we can treat rating values more flexibly



Billion-scale computations

In practice, in distributed setups, randomized SVD is used.
Examples:
• Criteo https://github.com/criteo/Spark-RSVD
• Facebook's randomized SVD implementation

https://research.fb.com/fast-randomized-svd
Research:
• “out-of-memory” SVD  [Kabir 2017]
• communication-avoiding algebra [Demmel 2008]
• DeepMind’s attempt to adapt to modern hardware  (GPU, TPU) via 

game-theoretic approach
https://www.deepmind.com/blog/game-theory-as-an-engine-for-large-scale-data-analysis

https://github.com/criteo/Spark-RSVD
https://research.fb.com/fast-randomized-svd
https://www.deepmind.com/blog/game-theory-as-an-engine-for-large-scale-data-analysis


Streaming and incremental learning

Incremental learning:
•Adding new users/items:

• rank-1 updates (see G. Golub, C. Van Loan,  “Matrix Computations”)

• M. Brand "Incremental singular value decomposition of uncertain data with missing values.", 
2002.

•Adding new interactions:
• Can be done via projector splitting approach [Lubich & Oseledets 2013]

• Example in recsys: [Olaleke et al. 2021]

Streaming:
•Method of frequent directions [Ghashami et al. 2016]
•Zoom SVD [Jang et al. 2018]



More general MF optimization scheme

Optimization objective:

𝒥 Θ = ℒ(A, Θ) + Ω(Θ)

Model parameters: Θ = {𝑃, 𝑄}

Ω(Θ) - additional constraints, e.g. 𝐿2 regularization

stochastic gradient descent (SGD)

alternating least squares (ALS) 

Typical optimization algorithms: GD:

൝
𝒑𝑖 ← 𝒑𝑖 − 𝜂𝛻𝒑𝒊𝒥

𝒒𝑗 ← 𝒒𝑗 − 𝜂𝛻𝒒𝑗𝒥

ALS:

ቐ
𝑃∗ = argmin

𝑃
𝒥(Θ)

𝑄∗ = argmin
𝑄

𝒥(Θ)



• More involved optimization (no rank truncation).
• Allow for custom optimization objectives.

ALS vs SGD vs SVD
ALS

• More stable

• Fewer hyper-parameters to tune

• Higher complexity, however requires 
fewer iterations

• Embarrassingly parallel

• Higher communication cost in distributed 
environment

• Coordinate Descent can be a good 
alternative (e.g., eALS by [He et al. 2016])

SGD
• Sensitive to hyper-parameters

• Requires special treatment of learning rate

• Lower complexity but slower 
convergence, using adaptive learning rate 
schedule (ADAM, Adagard, etc.) helps

• Inherently sequential (parallelization is 
tricky for RecSys)

• Hogwild! algorithm is not directly 
applicable in CF settings

(ALS, SGD) vs SVD:

General rule of thumb: avoid distributed setups.



Working with imbalanced data

• SGD: 
• negative sampling

• iALS:
• confidence weights

ℒ =

𝑖𝑗

𝑤(𝑎𝑖𝑗) ⋅ 𝑙 𝑠𝑖𝑗 − 𝑟𝑖𝑗
2

• PureSVD
• data normalization

ሚ𝐴 = 𝐷𝐴0, 𝐷 𝑖𝑖 = ‖𝑎𝑖‖
𝑓−1

All these methods aim to balance contribution of positive and negative items!



Case study: Yandex Zen

Company manages many different types of media content (news, search, etc.).

Goal: have a unified user representation across all domains.

Solution:

• A neural network embeds onto a latent space all unstructured content

• Users are updated through the “half”-ALS scheme

Algorithm:

• Get 𝑄 from external source (DNN)

• Update P based on most recent Q

≈

𝑃 𝑄𝑇

𝒑𝑖
𝑇

𝒒𝑗

𝐴



Case study: Yandex Music

https://academy.yandex.ru/posts/kholodnye-polzovateli-i-mnogorukie-bandity

Need to take into account different signals! For example:
• number of seconds a user spent listening to a track
• number of skips / fast forwards
• adding to playlist / favorites
• ...

Solved by iALS / WRMF model

ℒ =

𝑖𝑗

𝑤(𝑎𝑖𝑗) ⋅ 𝑙 𝑠𝑖𝑗 − 𝑟𝑖𝑗
2

https://academy.yandex.ru/posts/kholodnye-polzovateli-i-mnogorukie-bandity


Some recent trends

Multi-task learning (RecSys 2020 best paper)

Causality

Fairness and debiasing

Reinforcement Learning

Conversational Recommenders, critiquing
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https://vk.com/airi_institute

