
Open in ColabOpen in Colab

Lipschitz constant of a convolutional
layer in neural network
It was observed, that small perturbation in Neural Network input could lead to significant errors,
i.e. misclassifications. Picture below from the article.

Lipschitz constant bounds the magnitude of the output of a function, so it cannot change
drastically with a slight change in the input

In this notebook we will try to estimate Lipschitz constant of some convolutional layer of a Neural
Network.

Power method for the singular value estimation of matrix :

+0.001x

Bagle

ISTOP
+0.001x

stopsign

piano

STOP

teddy
∥NN(image) − NN(image + ε)∥ ≤ L∥ε∥

W

⊤

Two way partitioning problem

Intuition

Suppose, we have a set of objects, which are needed to be splitted into two groups. Moreover,
we have information about the preferences of all possible pairs of objects to be in the same
group. this information could be presented in the matrix form: , where is the
cost of having -th and -th object in the same partitions. It is easy to see, that the total number
of partitions is finite and eqauls to . So this problem can in principle be solved by simply
checking the objective value of each feasible point. Since the number of feasible points grows
exponentially, however, this is possible only for small problems (say, with). In general (and
for n larger than, say,) the problem is very difficult to solve.

For example, bruteforce solution on MacBook Air with M1 processor without any explicit
parallelization will take more, than a universe lifetime for .

xk+1

σk+1

=
∥W W x ∥⊤

k

W W x⊤
k

=
∥x ∥k

∥W x ∥k

n

W ∈ Rn×n {w }ij

i j

2n

n ≤ 30
50

n = 62

Despite the hardness of the problems, there are several ways to approach it.

Problem
We consider the (nonconvex) problem

where is the symetric matrix. The constraints restrict the values of to or , so the
problem is equivalent to finding the vector with components that minimizes . The
feasible set here is finite (it contains points), thus, is non-convex.

The objective is the total cost, over all pairs of elements, and the problem is to find the partition
with least total cost.

Simple lower bound with duality
We now derive the dual function for this problem. The Lagrangian is

s.t.

x W x,
x∈Rn
min ⊤

x = 1, i = 1, … , ni
2

W ∈ Rn xi 1 −1
±1 x W x⊤

2n

n

We obtain the Lagrange dual function by minimizing over :

sa

This dual function provides lower bounds on the optimal value of the difficult problem. For
example, we can take any specific value of the dual variable

This yields the bound on the optimal value :

Question Can you obtain the same lower bound without knowledge of duality, but using the
iddea of eigenvalues?

Code
Open in ColabOpen in Colab

References
Convex Optimization book by Stephen Boyd and Lieven Vandenberghe.

Eigenfaces

PCA recap

L(x, ν) = x W x +⊤ ν (x −
i=1

∑
n

i i
2 1) = x (W +⊤ diag(ν))x − 1 ν.⊤

x

g(ν) = x (W + diag(ν))x − 1 ν =
x∈Rn
inf ⊤ ⊤

= {1 ν,⊤

−∞,

W + diag(ν) ⪰ 0

 otherwise

ν = −λ (W)1,min

p∗

p ≥∗ g(ν) ≥ −1 ν =⊤ nλ (W)min

Intuition
Imagine, that you have a dataset of points. Your goal is to choose orthogonal axes, that describe
your data the most informative way. To be precise, we choose first axis in such a way, that
maximize the variance (expressiveness) of the projected data. All the following axes have to be
orthogonal to the previously chosen ones, while satisfy largest possible variance of the
projections.

Let's take a look at the simple 2d data. We have a set of blue points on the plane. We can easily
see that the projections on the first axis (red dots) have maximum variance at the final position of
the animation. The second (and the last) axis should be orthogonal to the previous one.

source

This idea could be used in a variety of ways. For example, it might happen, that projection of
complex data on the principal plane (only 2 components) bring you enough intuition for
clustering. The picture below plots projection of the labeled dataset onto the first to principal
components (PCs), we can clearly see, that only two vectors (these PCs) would be enogh to differ
Finnish people from Italian in particular dataset (celiac disease (Dubois et al. 2010))

source

Problem
The first component should be defined in order to maximize variance. Suppose, we've already
normalized the data, i.e. , then sample variance will become the sum of all squared

projections of data points to our vector , which implies the following optimization problem:

or

since we are looking for the unit vector, we can reformulate the problem:

a =
i

∑ i 0

w(1)

w =(1) a ⋅ w
∥w∥=1

arg max {
i

∑ ((i)
⊤)2}

w =(1) {∥Aw∥ } =
∥w∥=1

arg max 2 w A Aw
∥w∥=1

arg max { ⊤ ⊤ }

w =(1) arg max {
w w⊤

w A Aw⊤ ⊤ }
⊤

It is known, that for positive semidefinite matrix such vector is nothing else, but eigenvector
of , which corresponds to the largest eigenvalue. The following components will give you
the same results (eigenvectors).

So, we can conclude, that the following mapping:

describes the projection of data onto the principal components, where contains first (by the
size of eigenvalues) eigenvectors of .

Now we'll briefly derive how SVD decomposition could lead us to the PCA.

Firstly, we write down SVD decomposition of our matrix:

and to its transpose:

Then, consider matrix :

Which corresponds to the eigendecomposition of matrix , where stands for the matrix of
eigenvectors of , while contains eigenvalues of .

At the end:

The latter formula provide us with easy way to compute PCA via SVD with any number of
principal components:

A A⊤

A A⊤

=
n×k
Π ⋅

n×d
A

d×k
W

k W

k A A⊤

A = UΣW ⊤

A⊤ = (UΣW)⊤ ⊤

= (W) Σ U⊤ ⊤ ⊤ ⊤

= W Σ U⊤ ⊤

= W ΣU ⊤

AA⊤

A A⊤ = (W ΣU)(UΣV)⊤ ⊤

= W ΣIΣW ⊤

= W ΣΣW ⊤

= W Σ W2 ⊤

A A⊤ W

A A⊤ Σ2 A A⊤

Π = A ⋅ W =

= UΣW W = UΣ⊤

Examples

!

 Iris dataset

Consider the classical Iris dataset

source
We have the dataset matrix

Π =r U Σr r

A ∈ R150×4

Code
Open in ColabOpen in Colab

Related materials
Wikipedia

setosa

versicolor

virginica

P
C
2

3

PC1

Blog post
Blog post

