
Application of optimization

Linear least squares  

Problem  

In a least-squares, or linear regression, problem, we have measurements  and  and seek a
vector  such that  is close to . Closeness is defined as the sum of the squared differences:

also known as the -norm squared, 

For example, we might have a dataset of  users, each represented by  features. Each row  of  is the
features for user , while the corresponding entry  of  is the measurement we want to predict from ,
such as ad spending. The prediction is given by .

We find the optimal  by solving the optimization problem

Let  denote the optimal . The quantity  is known as the residual. If , we have a perfect
fit.
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Note, that the function needn't be linear in the argument  but only in the parameters  that are to be
determined in the best fit. 

Approaches  

Moore–Penrose inverse  

If the matrix  is relatively small, we can write down and calculate exact solution:

where  is called pseudo-inverse matrix. However, this approach squares the condition number of the
problem, which could be an obstacle in case of ill-conditioned huge scale problem.

QR decomposition  

For any matrix  there is exists QR decomposition:

where  is an orthogonal matrix (its columns are orthogonal unit vectors meaning  and 
is an upper triangular matrix. It is important to notice, that since , we have:

Now, process of finding theta consists of two steps:

1. Find the QR decomposition of .
2. Solve triangular system , which is triangular and, therefore, easy to solve.

Cholesky decomposition  
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For any positive definite matrix  there is exists Cholesky decomposition:

where  is an lower triangular matrix. We have:

Now, process of finding theta consists of two steps:

1. Find the Cholesky decomposition of .
2. Find the  by solving triangular system 
3. Find the  by solving triangular system 

Note, that in this case the error stil proportional to the squared condition number.

Code  

Open in Colab

References  

CVXPY documentation
Interactive example
Jupyter notebook by A. Katrutsa

Total variation in-painting  

Problem  
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https://nbviewer.jupyter.org/github/amkatrutsa/MIPT-Opt/blob/master/16-LSQ/Seminar16en.ipynb
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Grayscale image  

A grayscale image is represented as an  matrix of intensities  (typically between the values  and 
). We are given all the values of corrupted picture, but some of them should be preserved as is through the

recovering procedure: , where  is the set of indices

corresponding to known pixel values. Our job is to in-paint the image by guessing the missing pixel values, i.e.,
those with indices not in . The reconstructed image will be represented by , where  matches the
known pixels, i.e.,  for .

The reconstruction  is found by minimizing the total variation of , subject to matching the known pixel
values. We will use the  total variation, defined as

So, the final optimization problem will be written as follows:

The crucial thing about this problem is defining set of known pixels . There are some heuristics: for
example, we could state, that each pixel with color similar (or exactly equal) to the color of text is unknown.
The results for such approach are presented below:
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Color image  

For the color case we consider in-painting problem in a slightly different setting: destroying some random part
of all pixels. In this case the image itself is 3d tensor (we convert all others color chemes to the RGB). As it was
in the grayscale case, we construct the mask  of known pixels for all color channels uniformly, based on the
principle of similarity of particular 3d pixel to the vector  (black pixel). The results are quite promising -
note, that we have no information about the original picture, but assumption, that corrupted pixels are black.
For the color picture we just sum all tv's on the each channel:

Then, we need to write down optimization problem to be solved:
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Results are presented below (these computations are really take time):

 

It is not that easy, right? 

 

Only 5% of all pixels are left:



 

What about 1% of all pixels?

 

Code  

Open in Colab

References  

CVXPY documentation
Interactive demo

Minimum volume ellipsoid  

Problem  
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Let  be the points in . Given these points we need to find an ellipsoid, that contains all points
with the minimum volume (in 2d case volume of an ellipsoin is just the square).

An invertible linear transformation applied to a unit sphere produces an ellipsoid with the square, that is 
 times bigger, than the unit sphere square, that's why we parametrize the interior of ellipsoid in the

following way:

Sadly, the determinant is the function, which is relatively hard to minimize explicitly. However, the function 
 is actually convex, which provides a great opportunity to work with it. As soon as

we need to cover all the points with ellipsoid of minimum volume, we pose an optimization problem on the
convex function with convex restrictions:
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Code  

Open in Colab

References  

Jupyter notebook by A. Katrutsa
https://cvxopt.org/examples/book/ellipsoids.html

Rendezvous problem  

Problem  

We have two bodies in discrete time: the first is described by its coordinate  and its speed , the second
has coordinate  and speed . Each body has its own dynamics, which we denote as linear systems with
matrices :

We want these bodies to meet in future at some point  in such a way, that preserve minimum energy
through the path. We will consider only kinetic energy, which is proportional to the squared speed at each
point of time, that's why optimization problem takes the following form:
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Problem of this type arise in space engeneering - just imagine, that the first body is the spaceship, while the
second, say, Mars.

Code  

Open in Colab

References  

Jupyter notebook by A. Katrutsa

Travelling salesman problem  

Problem  

Suppose, we have  points in  Euclidian space (for simplicity we'll consider and plot case with ). Let's
imagine, that these points are nothing else but houses in some 2d village. Salesman should find the shortest
way to go through the all houses only once.
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That is, very simple formulation, however, implies  - hard problem with the factorial growth of possible
combinations. The goal is to minimize the following cumulative distance:

where  is the -th point from  and  stands for the - dimensional vector of indicies, which describes the
order of path. Actually, the problem could be formulated as an LP problem, which is easier to solve.

�Genetic (evolution) algorithm  

Our approach is based on the famous global optimization algorithm, known as evolution algorithm.

Population and individuals  

Firstly we need to generate the set of random solutions as an initialization. We will call a set of solutions 
 as population, while each solution is called individual (or creature).

Each creature contains integer numbers , which indicates the order of bypassing all the houses. The
creature, that reflects the shortest path length among the others will be used as an output of an algorithm at
the current iteration (generation).

Crossing procedure  

Each iteration of the algorithm starts with the crossing (breed) procedure. Formally speaking, we should
formulate the mapping, that takes two creature vectors as an input and returns its offspring, which inherits
parents properties, while remaining consistent. We will use ordered crossover as such procedure.
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0 4 7 3 6 2 5 1 8 9

Parent 1 

Parent 2 

Child
Mutation  

In order to give our algorithm some ability to escape local minima we provide it with mutation procedure. We
simply swap some houses in an individual vector. To be more accurate, we define mutation rate (say, ). On
the one hand, the higher the rate, the less stable the population is, on the other, the smaller the rate, the
more often algorithm gets stuck in the local minima. We choose  individuals and in each
case swap random  digits.

Selection  

https://en.wikipedia.org/wiki/Travelling_salesman_problem#Integer_linear_programming_formulations
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At the end of the iteration we have increased populatuion (due to crossing results), than we just calculate total
path distance to each individual and select top  of them. 

In general, for any , where  is the number of dimensions in the Euclidean space, there is a polynomial-
time algorithm that finds a tour of length at most  times the optimal for geometric instances of TSP in
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Code  

Open in Colab

References  

General information about genetic algorithms
Wiki

Deep learning  

Problem  
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A lot of practical task nowadays are being solved by the deep learning approach, which is usually implies
finding local minimum of a non - convex function, that generalizes well (enough 😉). The goal of this short
text is to provide you an importance of the optimization behind neural network training.

Cross entropy  

One of the most commonly used loss functions in classification tasks is the normalized categorical cross
entropy in  class problem:

Since in Deep Learning tasks the number of points in a dataset could be really huge, we usually use {%include
link.html title='Stochastic gradient descent based approaches as a workhorse.

In such algorithms one uses the estimation of a gradient at each step instead of the full gradient vector, for
example, in cross entropy we have:

The simplest approximation is statistically judged unbiased estimation of a gradient:

where we initially sample randomly only  points and calculate sample average. It can be also considered
as a noisy version of the full gradient approach.
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Code  

Open in Colab

References  

Optimization for Deep Learning Highlights in 2017
An overview of gradient descent optimization algorithms
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