
Application of optimization

Linear least squares

Problem

In a least-squares, or linear regression, problem, we have measurements and and seek a
vector such that is close to . Closeness is defined as the sum of the squared differences:

also known as the -norm squared,

For example, we might have a dataset of users, each represented by features. Each row of is the
features for user , while the corresponding entry of is the measurement we want to predict from ,
such as ad spending. The prediction is given by .

We find the optimal by solving the optimization problem

Let denote the optimal . The quantity is known as the residual. If , we have a perfect
fit.

af://n2
af://n4

Note, that the function needn't be linear in the argument but only in the parameters that are to be
determined in the best fit.

Approaches

Moore–Penrose inverse

If the matrix is relatively small, we can write down and calculate exact solution:

where is called pseudo-inverse matrix. However, this approach squares the condition number of the
problem, which could be an obstacle in case of ill-conditioned huge scale problem.

QR decomposition

For any matrix there is exists QR decomposition:

where is an orthogonal matrix (its columns are orthogonal unit vectors meaning and
is an upper triangular matrix. It is important to notice, that since , we have:

Now, process of finding theta consists of two steps:

1. Find the QR decomposition of .
2. Solve triangular system , which is triangular and, therefore, easy to solve.

Cholesky decomposition

af://n13
af://n14
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
af://n18
af://n29

For any positive definite matrix there is exists Cholesky decomposition:

where is an lower triangular matrix. We have:

Now, process of finding theta consists of two steps:

1. Find the Cholesky decomposition of .
2. Find the by solving triangular system
3. Find the by solving triangular system

Note, that in this case the error stil proportional to the squared condition number.

Code

Open in Colab

References

CVXPY documentation
Interactive example
Jupyter notebook by A. Katrutsa

Total variation in-painting

Problem

af://n45
https://colab.research.google.com/drive/1en8JLreLD4t4SUgzgxB7GyQ7y_fe8Z-X
af://n47
https://www.cvxpy.org/examples/basic/least_squares.html
http://setosa.io/ev/ordinary-least-squares-regression/
https://nbviewer.jupyter.org/github/amkatrutsa/MIPT-Opt/blob/master/16-LSQ/Seminar16en.ipynb
af://n54
af://n57

Grayscale image

A grayscale image is represented as an matrix of intensities (typically between the values and
). We are given all the values of corrupted picture, but some of them should be preserved as is through the

recovering procedure: , where is the set of indices

corresponding to known pixel values. Our job is to in-paint the image by guessing the missing pixel values, i.e.,
those with indices not in . The reconstructed image will be represented by , where matches the
known pixels, i.e., for .

The reconstruction is found by minimizing the total variation of , subject to matching the known pixel
values. We will use the total variation, defined as

So, the final optimization problem will be written as follows:

The crucial thing about this problem is defining set of known pixels . There are some heuristics: for
example, we could state, that each pixel with color similar (or exactly equal) to the color of text is unknown.
The results for such approach are presented below:

af://n59

Color image

For the color case we consider in-painting problem in a slightly different setting: destroying some random part
of all pixels. In this case the image itself is 3d tensor (we convert all others color chemes to the RGB). As it was
in the grayscale case, we construct the mask of known pixels for all color channels uniformly, based on the
principle of similarity of particular 3d pixel to the vector (black pixel). The results are quite promising -
note, that we have no information about the original picture, but assumption, that corrupted pixels are black.
For the color picture we just sum all tv's on the each channel:

Then, we need to write down optimization problem to be solved:

af://n67

Results are presented below (these computations are really take time):

It is not that easy, right?

Only 5% of all pixels are left:

What about 1% of all pixels?

Code

Open in Colab

References

CVXPY documentation
Interactive demo

Minimum volume ellipsoid

Problem

af://n78
https://colab.research.google.com/drive/1eo2gCGoCfIYP5qAv8tPGpSw1U4w-wpDe
af://n80
https://www.cvxpy.org/examples/applications/tv_inpainting.html
https://remi.flamary.com/demos/proxtv.html
af://n85
af://n88

Let be the points in . Given these points we need to find an ellipsoid, that contains all points
with the minimum volume (in 2d case volume of an ellipsoin is just the square).

An invertible linear transformation applied to a unit sphere produces an ellipsoid with the square, that is
 times bigger, than the unit sphere square, that's why we parametrize the interior of ellipsoid in the

following way:

Sadly, the determinant is the function, which is relatively hard to minimize explicitly. However, the function
 is actually convex, which provides a great opportunity to work with it. As soon as

we need to cover all the points with ellipsoid of minimum volume, we pose an optimization problem on the
convex function with convex restrictions:

af://n97

Code

Open in Colab

References

Jupyter notebook by A. Katrutsa
https://cvxopt.org/examples/book/ellipsoids.html

Rendezvous problem

Problem

We have two bodies in discrete time: the first is described by its coordinate and its speed , the second
has coordinate and speed . Each body has its own dynamics, which we denote as linear systems with
matrices :

We want these bodies to meet in future at some point in such a way, that preserve minimum energy
through the path. We will consider only kinetic energy, which is proportional to the squared speed at each
point of time, that's why optimization problem takes the following form:

af://n97
https://colab.research.google.com/drive/1L6gTok0LLBPJFKxT6bhV1rp-li-SbaC4
af://n99
https://colab.research.google.com/github/amkatrutsa/MIPT-Opt/blob/master/01-Intro/demos.ipynb#scrollTo=W264L1t1p3mF
http://cvxopt%20documentation/
af://n104
af://n107

Problem of this type arise in space engeneering - just imagine, that the first body is the spaceship, while the
second, say, Mars.

Code

Open in Colab

References

Jupyter notebook by A. Katrutsa

Travelling salesman problem

Problem

Suppose, we have points in Euclidian space (for simplicity we'll consider and plot case with). Let's
imagine, that these points are nothing else but houses in some 2d village. Salesman should find the shortest
way to go through the all houses only once.

af://n114
https://colab.research.google.com/drive/1kEbqeg17abuhL8rXYvnKjzEw892psIpW
af://n116
https://colab.research.google.com/github/amkatrutsa/MIPT-Opt/blob/master/01-Intro/demos.ipynb#scrollTo=W264L1t1p3mF
af://n119
af://n122

That is, very simple formulation, however, implies - hard problem with the factorial growth of possible
combinations. The goal is to minimize the following cumulative distance:

where is the -th point from and stands for the - dimensional vector of indicies, which describes the
order of path. Actually, the problem could be formulated as an LP problem, which is easier to solve.

�Genetic (evolution) algorithm

Our approach is based on the famous global optimization algorithm, known as evolution algorithm.

Population and individuals

Firstly we need to generate the set of random solutions as an initialization. We will call a set of solutions
 as population, while each solution is called individual (or creature).

Each creature contains integer numbers , which indicates the order of bypassing all the houses. The
creature, that reflects the shortest path length among the others will be used as an output of an algorithm at
the current iteration (generation).

Crossing procedure

Each iteration of the algorithm starts with the crossing (breed) procedure. Formally speaking, we should
formulate the mapping, that takes two creature vectors as an input and returns its offspring, which inherits
parents properties, while remaining consistent. We will use ordered crossover as such procedure.

8 4 7 3 6 2 5 1 9 0

0 1 2 3 4 5 6 7 8 9

0 4 7 3 6 2 5 1 8 9

Parent 1

Parent 2

Child
Mutation

In order to give our algorithm some ability to escape local minima we provide it with mutation procedure. We
simply swap some houses in an individual vector. To be more accurate, we define mutation rate (say,). On
the one hand, the higher the rate, the less stable the population is, on the other, the smaller the rate, the
more often algorithm gets stuck in the local minima. We choose individuals and in each
case swap random digits.

Selection

https://en.wikipedia.org/wiki/Travelling_salesman_problem#Integer_linear_programming_formulations
af://n128
af://n130
af://n133
http://www.rubicite.com/Tutorials/GeneticAlgorithms/CrossoverOperators/Order1CrossoverOperator.aspx
af://n136
af://n138

At the end of the iteration we have increased populatuion (due to crossing results), than we just calculate total
path distance to each individual and select top of them.

In general, for any , where is the number of dimensions in the Euclidean space, there is a polynomial-
time algorithm that finds a tour of length at most times the optimal for geometric instances of TSP in

af://n142

Code

Open in Colab

References

General information about genetic algorithms
Wiki

Deep learning

Problem

af://n142
https://colab.research.google.com/drive/1CBXSIB9nRqA9nqmUYQpQrVSm1YOx_7go
af://n144
http://www.rubicite.com/Tutorials/GeneticAlgorithms.aspx
https://en.wikipedia.org/wiki/Travelling_salesman_problem
af://n149
af://n152

A lot of practical task nowadays are being solved by the deep learning approach, which is usually implies
finding local minimum of a non - convex function, that generalizes well (enough 😉). The goal of this short
text is to provide you an importance of the optimization behind neural network training.

Cross entropy

One of the most commonly used loss functions in classification tasks is the normalized categorical cross
entropy in class problem:

Since in Deep Learning tasks the number of points in a dataset could be really huge, we usually use {%include
link.html title='Stochastic gradient descent based approaches as a workhorse.

In such algorithms one uses the estimation of a gradient at each step instead of the full gradient vector, for
example, in cross entropy we have:

The simplest approximation is statistically judged unbiased estimation of a gradient:

where we initially sample randomly only points and calculate sample average. It can be also considered
as a noisy version of the full gradient approach.

af://n155
af://n166

Code

Open in Colab

References

Optimization for Deep Learning Highlights in 2017
An overview of gradient descent optimization algorithms

af://n166
https://colab.research.google.com/drive/15mwtjt_kxRNCQKHxGDpK9drgpEieT0y3
af://n168
http://ruder.io/deep-learning-optimization-2017/
http://ruder.io/optimizing-gradient-descent/

	Linear least squares
	Problem
	Approaches
	Moore–Penrose inverse
	QR decomposition
	Cholesky decomposition

	Code
	References

	Total variation in-painting
	Problem
	Grayscale image
	Color image

	Code
	References

	Minimum volume ellipsoid
	Problem
	Code
	References

	Rendezvous problem
	Problem
	Code
	References

	Travelling salesman problem
	Problem
	🧬Genetic (evolution) algorithm
	Population and individuals
	Crossing procedure
	Mutation
	Selection

	Code
	References

	Deep learning
	Problem
	Cross entropy

	Code
	References

